$\mathrm{S}_{\mathrm{N}} 2^{\prime}$ Ring opening of aziridines bearing an α, β-unsaturated ester group with organocopper reagents. A new stereoselective synthetic route to (E)-alkene dipeptide isosteres

Nobutaka Fujii, ${ }^{*, a}$ Kazuo Nakai, ${ }^{a}$ Hirokazu Tamamura, ${ }^{a}$ Akira Otaka, ${ }^{a}$ Norio Mimura, ${ }^{b}$ Yoshihisa Miwa, ${ }^{b}$ Tooru Taga, ${ }^{b}$ Yoshinori Yamamoto ${ }^{*, c}$ and Toshiro Ibuka ${ }^{*, a}$
" Faculty of Pharmaceutical Sciences, Kyoto University, Kyoto 606, Japan
${ }^{\text {b }}$ Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto 606, Japan
${ }^{\text {c }}$ Department of Chemistry, Tohoku University, Sendai 980, Japan

Abstract

Regio- and stereo-selective synthesis of (E)-alkene dipeptide isosteres has been successfully achieved by exposing both (E) - and (Z)- N-(4-methylphenyl)sulfonyl- γ, δ-epimino- α, β-enoates to organocopper reagents at $-78^{\circ} \mathrm{C}$ for 30 min .

Recently, there has been considerable interest in the backbone modification of amide bonds in biologically active peptides. \dagger^{+1} Among the known isosteric units, the (E)-double bond has been a topic of long-standing interest in the synthetic, ${ }^{2}$ theoretical ${ }^{3}$ and biological arena. ${ }^{4}$ The $(E)-\mathrm{CH}=\mathrm{CH}$ double bond in the mimic 1 closely resembles the three-dimensional structure of the parent amide bond in peptides 2 (Scheme 1).

We have been interested in the synthetically useful ringopening of γ, δ-epimino- α, β-enoates 3 and 5 with organocopper reagents in connection with synthetic studies on dipeptide isosteres 4 and 6 with stereochemically well defined structures (Scheme 2). ${ }^{5}$ Various types of γ, δ-epimino- α, β-enoates have been successfully used in the synthesis of natural products such as pyrrolizidine alkaloids by Hudlicky, ${ }^{6}$ Pearson ${ }^{7}$ and others. ${ }^{8}$ Recently, a report dealing with the palladium-catalysed reaction of γ, δ-epimino- α, β-enoates has been published; ${ }^{9}$ however, prior to the initiation of our studies no information was available regarding the regio- and stereo-chemistry of organocopper-mediated reactions of γ, δ-epimino- α, β-enoates 3 and 5. Previously we demonstrated that the highly anti- $\mathrm{S}_{\mathrm{N}} 2^{\prime}$ nature of the reactions of α, β-enoates having an electronwithdrawing group at the γ-position with organocopper reagents could be used to relay the stereochemistry of the γ position to the α-position in a highly stereoselective manner. ${ }^{10}$ A similar relation can be expected to hold for the reaction of γ, δ-epimino- α, β-enoates 3 and 5 with organocopper reagents. From an experimental point of view, the γ, δ-epimino- α, β enoates have the advantage in that they are usually stable and are readily purified by recrystallization.

It has been reported that the stereochemistry at the α-carbon centre in dipeptide isosteres is one of the essential factors for enzyme inhibition. ${ }^{4 a}$ The importance of optically active (E) alkene isosteres as key intermediates for the synthesis of various

[^0]
types of polypeptides has been demonstrated by many groups. ${ }^{4}$ We have also recently reported that the synthesized isosteric peptide 7 is a potent bombesin receptor antagonist. ${ }^{11} \mathrm{We}$ anticipated the need to synthesize large quantities of peptides containing (E)-alkene dipeptide isosteres and therefore a more reliable synthesis of (E)-alkene dipeptide isosteres than those reported to date was required. While this manuscript was being prepared, a report was published that described a similar synthetic route to the synthesis of (E)-alkene isosteres from N-tert-butoxycarbonyl- γ, δ-epimino- $(E)-\alpha, \beta$-enoates. ${ }^{12}$

The present study was undertaken with two goals in mind: (1) to find reaction conditions whereby $\psi[(E)-\mathrm{CH}=\mathrm{CH}]$ dipeptide isosteres 4 and 6 can be synthesized from readily available γ, δ-epimino- α, β-enoates 3 and 5 in high chemical yields and (2) to examine the stereochemical relationship between substrate and product stereochemistry.

Results and discussion

It is well documented that the reactivity of the N-unactivated of aziridines towards nucleophiles is relatively low; hence,
activation by the introduction of an electron-withdrawing protecting group on the nitrogen atom of the aziridine is required. The term 'activated aziridines' has been introduced by Ham for aziridines that easily undergo nucleophilic $S_{N} 2$-type ring-opening. ${ }^{13}$ The 4-methylphenylsulfonyl (tosyl) group serves as a most effective activating group. In addition, the N tosyl group can withstand a wide range of chemical manipulations and yet be removed by the use of Baldwin's protocol. ${ }^{14}$

The four possible positions for attack by nucleophiles are $x\left(\mathrm{~S}_{\mathrm{N}} 2^{\prime}\right.$ reaction), β (1,4-addition), $\gamma\left(\mathrm{S}_{\mathrm{N}} 2\right.$ reaction) or $\delta\left(\mathrm{S}_{\mathrm{N}} 2\right.$ reaction) of the activated γ, δ-epimino- α, β-unsaturated esters. Thus, it is not easy to predict whether α, β, γ or δ is the most reactive position in the reaction with nucleophilic reagents. Although the regio- and stereo-selectivity of the reaction is expected to be controlled by a balance of steric as well as electronic factors, it was our expectation to be able to synthesize stereochemically pure (E)-alkene isosteres from N-tosyl- γ, δ -epimino- α, β-unsaturated esters by employing organocoppermediated anti- $\mathrm{S}_{\mathrm{N}} 2^{\prime}$ reactions. ${ }^{10 a-d}$ In this context, several $(E) /(Z)$-pairs of N-tosyl- γ, δ-epimino- α, β-unsaturated esters were synthesized.

Synthesis of $(E) /(Z)$-pairs of N-tosyl- γ, δ-epimino- α, β unsaturated esters
As shown in Scheme 3, the requisite N-tosyl γ, δ-epimino- α, β -

Scheme 3 Reagents and conditions: i, DIBAL, $-78^{\circ} \mathrm{C}$; ii, $\mathrm{Ph}_{3} \mathrm{P}=\mathrm{CHCO}_{2} \mathrm{Me}$ or $(\mathrm{MeO})_{2} \mathrm{P}(\mathrm{O}) \mathrm{CH}(\mathrm{Na}) \mathrm{CO}_{2} \mathrm{Me} ; \quad$ iii, $(\mathrm{COCl})_{2}-$ DMSO, $-78^{\circ} \mathrm{C}$ and then $\operatorname{EtN}\left(\mathrm{Pr}^{1}\right)_{2}$
enoates $9,10,12,13,15$ and 16 were readily prepared from known methyl ($2 R$)-1-tosylaziridine-2-carboxylate $8,{ }^{14,15}$ methyl ($2 S, 3 S$)-3-methyl-1-tosylaziridine-2-carboxylate $11^{16 a}$ and methyl ($2 R, 3 S$)-3-methyl-1-tosylaziridine-2-carboxylate $14,{ }^{16 b}$ respectively. Typically, the aziridine 8 was treated successively with diisobutylaluminium hydride (DIBAL; 1.2
equiv., $-78-0^{\circ} \mathrm{C}$) in dichloromethane-water at $-78^{\circ} \mathrm{C}$, and (methoxycarbonylmethylene)triphenylphosphorane (1 equiv., $-78-0^{\circ} \mathrm{C}$) in a one-pot reaction to give a separable 36:64 mixture of (E) - and $(Z)-\alpha, \beta$-enoates 9 and 10 in an 81% combined yield. In an analogous manner, the aziridines 11 and 14 were converted into the enoates $12,13,15$ and 16 , respectively, in comparable yields. Although the synthetic procedure described above gives $(Z)-\alpha, \beta$-enoates 10,13 and 16 as the major products, the (E)-enoates can be obtained as the major product by using the sodium salt of trimethylphosphonoacetate instead of (methoxycarbonylmethylene)triphenylphosphorane. For example, successive treatment of 11 with DIBAL at $-78^{\circ} \mathrm{C}$, saturated aqueous ammonium chloride at $-78^{\circ} \mathrm{C}$, and the sodium salt of trimethylphosphonoacetate at $0^{\circ} \mathrm{C}$ in a one-pot reaction gave the (E)-enoate 12 as the major product (12:13 = $83: 17,92 \%$ combined yield).

The other α, β-enoates 18,21 and 22 that have a phenyl group on the aziridine moiety were synthesized from 3-phenyl-1-tosylaziridin-2-ylmethanols $\mathbf{1 7}{ }^{16 b}$ and $20,{ }^{16 b}$ respectively, by Swern oxidation followed by exposure to (methoxycarbonylmethylene)triphenylphosphorane. The (Z)-enoate 19 could not be isolated in a pure state due to its instability. The (E) - and (Z)-stereochemistry for all α, β-enoates synthesized were assigned on the basis of ${ }^{1} \mathrm{H}$ NMR spectral analyses.

Reaction of N-tosyl- γ, δ-epimino- α, β-enoates with organocopper reagents. Synthesis of (E)-alkene dipeptide isosteres
The scope of the organocopper-mediated reaction was determined by using the four stereoisomeric substrates $\mathbf{1 2}, \mathbf{1 3}$, 15 and 16. It was not surprising, as shown in Scheme 4, that the

Scheme 4 Reagents and conditions: $\mathrm{i}, \mathrm{Me}_{2} \mathrm{Cu}(\mathrm{CN}) \mathrm{Li}_{2} \cdot 2 \mathrm{LiBr},-78^{\circ} \mathrm{C}$, 30 min ; ii, $\mathrm{Me}_{2} \mathrm{CuLi} \cdot \mathrm{LiI} \cdot 2 \mathrm{LiBr},-78^{\circ} \mathrm{C}, 30 \mathrm{~min}$
reaction of (E)-enoate 12 and its (Z)-isomer 13 with either 'higher order' cyanocuprate $\ddagger, 17$ or Gilman reagent ${ }^{18}$ gave exclusively (entries 1 and 2 , Table 1) or predominantly (entry 3 , Table 1) the unwanted reduced $(E)-\beta, \gamma$-unsaturated ester 23. A similar trend was reported for $\mathrm{R}_{2} \mathrm{CuLi} \cdot \mathrm{LiI}$ - or $\mathrm{R}_{2} \mathrm{Cu}(\mathrm{CN}) \mathrm{Li}_{2^{-}}$ mediated reactions of γ-mesyloxy- α, β-enoates. ${ }^{10 a, b . f-h}$

It was found that MeZnCl in the presence of $10 \mathrm{~mol} \% \mathrm{CuCN}$ did not produce a clean reaction (entry 6, Table 1). The difficulty was overcome by using either 'lower order' methylcyanocuprate or dimethylzinc (or trimethylzincate) in the presence of $20-30 \mathrm{~mol} \% \mathrm{CuCN}$. It should be noted that the selection of the organometallic reagent is important and holds the key to successful transformation. As can be seen from Scheme 5 and Table 1, both the (E)- α, β-enoates (entries 4, 5, 10, 11, Table 1) and the (Z)- α, β-enoates (entries $7-9,12,13$, Table 1) produced predominantly the desired (E)-alkene dipeptide isosteres with a methyl group at the α-position, presumably via
\ddagger Although reagents prepared from CuCN and 2 equiv. of RLi may be represented as $\mathrm{R}_{2} \mathrm{CuLi} \cdot \mathrm{LiCN}$ by analogy to Gilman reagents, $\mathrm{R}_{2} \mathrm{CuLi} \cdot \mathrm{Lil}$ for the cuprates prepared from CuI and 2 equiv. of RLi as suggested by Dr Bertz and others, the constitutional formula $\mathrm{R}_{2} \mathrm{Cu}(\mathrm{CN}) \mathrm{Li}_{2}$ has been used throughout this paper as a matter of convenience. We are not concerned about the exact constitution, but watch the reactive species as a reagent system. For higher order reagents, see ref. 17.

Table 1 Reaction of N-tosyl- γ, δ-epimino- α, β-enoates $12,13,15$ and 16 with organometallic reagents ${ }^{a}$

Entry	Substrate	Reagent ${ }^{\text {b }}$	Conditions	Products (isolated yield) ${ }^{\text {c }}$		
				anti- $\mathrm{S}_{\mathrm{N}} 2^{\prime}$	$\mathrm{S}_{\mathrm{N}} 2$	Reduction
1	12	$\mathrm{Me}_{2} \mathrm{Cu}(\mathrm{CN}) \mathrm{Li}_{2} \cdot 2 \mathrm{LiBr}$	THF- $\mathrm{Et}_{2} \mathrm{O}(3: 1),-78^{\circ} \mathrm{C}, 30 \mathrm{~min}$	$-{ }^{\text {d }}$	$-{ }^{\text {d }}$	23 (72\%)
2	13	$\mathrm{Me}_{2} \mathrm{Cu}(\mathrm{CN}) \mathrm{Li}_{2} \cdot 2 \mathrm{LiBr}$	THF- $\mathrm{Et}_{2} \mathrm{O}(2: 1),-78^{\circ} \mathrm{C}, 30 \mathrm{~min}$	$-{ }^{\text {d }}$	- ${ }^{\text {d }}$	23 (85\%)
3	13	$\mathrm{Me}_{2} \mathrm{CuLi} \cdot \mathrm{LiI} \cdot 2 \mathrm{LiBr}$	$\mathrm{Et}_{2} \mathrm{O},-78{ }^{\circ} \mathrm{C}, 1 \mathrm{~h}$	28 (11\%)	27 (15\%)	23 (62\%)
4	12	$\mathrm{Me}_{2} \mathrm{Zn} \cdot 2 \mathrm{LiCl} \cdot 2 \mathrm{LiBr}, 20 \mathrm{~mol} \% \mathrm{CuCN}$	THF- $\mathrm{Et}_{2} \mathrm{O}(2: 1),-78^{\circ} \mathrm{C}, 30 \mathrm{~min}$	25 (88\%)	24 (2%)	
5	12	$\mathrm{MeCu}(\mathrm{CN}) \mathrm{Li} \cdot \mathrm{LiBr}$	THF- $\mathrm{Et}_{2} \mathrm{O}(4: 1),-78^{\circ} \mathrm{C}, 30 \mathrm{~min}$	25 (92\%)	24 (3%)	$-{ }^{d}$
6	13	$\mathrm{MeZnCl} \cdot \mathrm{LiCl} \cdot \mathrm{LiBr}, 10 \mathrm{~mol} \% \mathrm{CuCN}$	THF- $\mathrm{Et}_{2} \mathrm{O}(5: 1),-78^{\circ} \mathrm{C}, 30 \mathrm{~min}$	$28(8 \%)$	27 d	${ }^{\text {d }}$
7	13	$\mathrm{Me}_{3} \mathrm{ZnLi} \cdot 2 \mathrm{LiCl} \cdot 3 \mathrm{LiBr}, 30 \mathrm{~mol} \% \mathrm{CuCN}$	THF- $\mathrm{Et}_{2} \mathrm{O}(5: 1),-78^{\circ} \mathrm{C}, 30 \mathrm{~min}$	28 (90\%)	27 (4\%)	-d
8	13	$\mathrm{Me}_{2} \mathrm{Zn} \cdot 2 \mathrm{LiCl} \cdot 2 \mathrm{LiBr}, 20 \mathrm{~mol} \% \mathrm{CuCN}$	THF- $\mathrm{Et}_{2} \mathrm{O}(2: 1),-78^{\circ} \mathrm{C}, 30 \mathrm{~min}$	28 (94\%)	27 (4\%)	$\ldots{ }^{\text {- }}$
9	13	$\mathrm{MeCu}(\mathrm{CN}) \mathrm{Li} \cdot \mathrm{LiBr}$	THF- $\mathrm{Et}_{2} \mathrm{O}(5: 1),-78^{\circ} \mathrm{C}, 30 \mathrm{~min}$	28 (93\%)	27 (6\%)	$\ldots{ }^{\text {d }}$
10	15	$\mathrm{Me}_{2} \mathrm{Zn} \cdot 2 \mathrm{LiCl} \cdot 2 \mathrm{LiBr}, 20 \mathrm{~mol} \% \mathrm{CuCN}$	THF- $\mathrm{Et}_{2} \mathrm{O}(3: 2),-78^{\circ} \mathrm{C}, 30 \mathrm{~min}$	$28(92 \%)$	29 (3\%)	$-{ }^{\text {d }}$
11	15	$\mathrm{MeCu}(\mathrm{CN}) \mathrm{Li} \cdot \mathrm{LiBr}$	THF-Et ${ }_{2} \mathrm{O}(5: 1),-78^{\circ} \mathrm{C}, 30 \mathrm{~min}$	28 (92\%)	29 (3\%)	${ }^{\text {d }}$
12	16	$\mathrm{Me}_{2} \mathrm{Zn} \cdot 2 \mathrm{LiCl} \cdot 2 \mathrm{LiBr}, 20 \mathrm{~mol} \% \mathrm{CuCN}$	THF- $\mathrm{Et}_{2} \mathrm{O}(3: 2),-78^{\circ} \mathrm{C}, 30 \mathrm{~min}$	25 (95\%)	26 (5\%)	$-{ }^{d}$
13	16	$\mathrm{MeCu}(\mathrm{CN}) \mathrm{Li} \cdot \mathrm{LiBr}$	THF- $\mathrm{Et}_{2} \mathrm{O}(5: 1),-78^{\circ} \mathrm{C}, 30 \mathrm{~min}$	25 (82\%)	26 (4\%)	$\ldots{ }^{\text {d }}$

a All reactions were carried out with $3-4$ mol equiv. of reagents. ${ }^{b} \mathrm{Me}_{3} \mathrm{ZnLi}$ and $\mathrm{Me}_{2} \mathrm{Zn}$ have been prepared from ethereal $\mathrm{ZnCl} \mathrm{I}_{2}$ and ethereal MeLi as the LiBr complex. $\mathrm{MeCu}(\mathrm{CN}) \mathrm{Li}$ has been prepared by treatment of CuCN with ethereal MeLi as the LiBr complex. ${ }^{\text {c }} \mathrm{All}$ the new compounds have been fully characterized spectrally, and their elemental compositions have been determined by high-resolution mass spectrometry and/or combustion analysis. Diastereoisomeric purities ($>98 \%$) of all isolated compounds were determined by HPLC. ${ }^{d}$ Although we can not conclusively rule out its presence, we were unable to isolate the corresponding product.

29
Scheme 5 Reagents and conditions: i, $\mathrm{MeCu}(\mathrm{CN}) \mathrm{Li} \cdot \mathrm{LiBr},-78^{\circ} \mathrm{C}$; ii, $\mathrm{Me}_{2} \mathrm{Zn} \cdot 2 \mathrm{LiCl} \cdot 2 \mathrm{LiBr}$ (or $\mathrm{Me}_{3} \mathrm{ZnLi} \cdot 2 \mathrm{LiCl} \cdot 3 \mathrm{LiBr}$), $20-30 \mathrm{~mol} \% \mathrm{CuCN}$, $-78^{\circ} \mathrm{C}$
the anti- $\mathrm{S}_{\mathrm{N}} 2^{\prime}$ pathway. The minor product isolated in each reaction is that produced by the $\mathrm{S}_{\mathrm{N}} 2$ reaction (compounds 24, 26, 27 and 29 in Scheme 5).
The absolute configuration of the methylated carbon centre
in (E)-alkene isosteres can be determined by a circular dichroism measurement. We have previously reported that given the sign of the $\mathrm{n} \rightarrow \pi^{*}$ Cotton effect, the absolute configuration at the α-position in the (E)-alkene isosteres can be determined. ${ }^{19}$ The isostere 25 shows a negative $\mathrm{n} \rightarrow \pi^{*}$ Cotton effect ($\Delta \varepsilon-0.62,213.6 \mathrm{~nm}$, in isooctane), whereas the isomeric isostere 28 exhibits a positive $\mathrm{n} \rightarrow \pi^{*}$ Cotton effect ($\Delta \varepsilon+2.15$, 221.1 nm , in isooctane). Consequently, the absolute configuration at the methylated carbon centre in the isosteres 25 and 28 was assigned as R and S, respectively. However, a weak Cotton effect ($1>\Delta \varepsilon>-1$) leaves room for considerable uncertainty about the absolute stereochemistry at the α-position of the isostere 25.

The absolute configuration at the methylated carbon centre in the $\mathrm{S}_{\mathrm{N}} 2^{\prime}$-products $\mathbf{2 5}$ and $\mathbf{2 8}$ was unambiguously established by chemical conversion of $\mathbf{2 5}$ and 28 into the known alcohols $\mathbf{3 2}$ and 34, ${ }^{10,12,20}$ respectively, through a four-step sequence of reactions illustrated in Scheme 6. Thus, the isostere 25 was

Scheme 6 Reagents and conditions: i, DIBAL, $\mathrm{CH}_{2} \mathrm{Cl}_{2},-78^{\circ} \mathrm{C}-$ r.t.; ii, $\mathrm{PhCH}_{2} \mathrm{Br}, \mathrm{NaH}$, DMF; iii, $\mathrm{O}_{3}, \mathrm{CH}_{2} \mathrm{Cl}_{2},-78^{\circ} \mathrm{C}$; iv, DIBAL, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, $-78-0{ }^{\circ} \mathrm{C}$
treated with DIBAL followed by sodium hydride and benzyl bromide to give the benzyl ether $\mathbf{3 0}$. Ozonolysis of $\mathbf{3 0}$, followed by reduction with DIBAL at $-78^{\circ} \mathrm{C}$ produced the known benzyloxy alcohol $32^{10 f, 12,19}$ along with the amino alcohol 31. The spectral data (${ }^{1} \mathrm{H}$ NMR, specific rotation, and HPLC analyses on chiral columns) for 32 were found to be identical with those of an authentic sample. ${ }^{10 f, 12,20}$ The above reaction sequence was also performed by starting from the protected

Scheme 7 Reagents: i, $(\mathrm{COCl})_{2}-\mathrm{DMSO}_{2} \mathrm{Et}_{3} \mathrm{~N} ; \mathrm{ii}, \mathrm{Ph}_{3} \mathrm{P}=\mathrm{CHCO}_{2} \mathrm{Me}$

Scheme 8
isostere $\mathbf{2 8}$ leading to the known benzyloxy alcohol $34^{10 f .12 .20}$ (see Experimental).
The structure and stereochemistry of the minor $\mathrm{S}_{\mathrm{N}} 2$ byproducts 24, 26, 27 and 29 were confirmed by comparison of their data (${ }^{1} \mathrm{H}$ NMR and specific rotation) with those of authentic samples prepared from the homochiral known alcohols 35 and 36^{21} by treatment with $(\mathrm{COCl})_{2}$-DMSO$\mathrm{Et}_{3} \mathrm{~N}$, followed by (methoxycarbonylmethylene)triphenylphosphorane and flash chromatographic separation, following an unambiguous, independent synthetic route (Scheme 7).
As can be seen from Scheme 8 and Table 2 (except for entry 3), comparably high chemical yields of anti- $\mathrm{S}_{\mathrm{N}} 2^{\prime}$ products were obtained from the reaction of $(E)-\alpha, \beta$-enoates 15,18 and 21 and $(Z)-\alpha, \beta$-enoates 10,13 and 22 with organometallic reagents. It is of particular interest that these reactions exhibit high levels of regioselectivity, desired (E)-stereoselectivity of the β, γ-double bond, and an impressive degree of diastereoselectivity ($>98: 2$). All of the highly selective reactions were generally complete in a
few minutes at $-78^{\circ} \mathrm{C}$, but the reaction mixture was usually stirred for 30 min . In addition, this strategy also allows flexibility in introducing substituents such as $\mathrm{Et}, \mathrm{Bu}, \mathrm{Pr}^{i}$, (Pr O) $\mathrm{Me}_{2} \mathrm{SiCH}_{2}$ and $p-\mathrm{FC}_{6} \mathrm{H}_{4} \mathrm{CH}_{2}$ at the α-position of the ester group by merely changing the reagent (entries 1-13, Table 2).
It should be clearly noted that the treatment of substrates with lower order alkylcyanocuprates in the presence or absence of lithium salts such as lithium chloride afforded anti- $\mathrm{S}_{\mathrm{N}} 2^{\prime}$ products either predominantly (entries $1,2,5,6$ and 8 , Table 2) or exclusively (entries 9-15 and 17, Table 2). However, exposure of the enoate 13 to diethylzinc in the presence of $20 \mathrm{~mol} \%$ CuCN only gave unchanged starting material (entry 3 , Table 2). It was found that the addition of LiCl to a mixture of diethylzinc and $20 \mathrm{~mol} \% \mathrm{CuCN}$ was essential for optimizing the reaction rates and chemical yields (compare entry 3 with 4, 16 and 18, Table 2). Such lithium salt effects on organocoppermediated reactions have been well documented. ${ }^{10 g, 22}$
Having established useful reaction conditions for the synthesis of (E)-alkene dipeptide isosteres from (E)- or (Z)-N-tosyl- γ, δ-epimino- α, β-enoates, the reaction of four- and fivemembered heterocycles 53,55 and 56 with organocopper reagents was briefly investigated. The required chiral four- and five-membered heterocycles were readily prepared in high yields from the known alcohols $52^{21 b}$ and $54^{21 b}$ via a routine sequence of reactions (Scheme 9). As expected, we do not detect any ring-

Scheme 9 Reagents: i, $(\mathrm{COCl})_{2}-\mathrm{DMSO}, \mathrm{EtN}\left(\mathrm{Pr}^{\mathrm{i}}\right)_{2} ;$ ii, $\mathrm{Ph}_{3} \mathrm{P}=\mathrm{CH}-$ $\mathrm{CO}_{2} \mathrm{Me}$
opened products when the α, β-enoates 53,55 and 56 are treated with organocopper reagents. Only unchanged starting material was isolated. This clearly demonstrates that a small change in the ring size of aza-cycloalkanes alters their reactivity towards organocopper reagents.
As stated before, the (E) - and $(Z)-\alpha, \beta$-enoates produced the desired dipeptide isosteres with an (E)-double bond as the major or exclusive product(s) by treatment with either alkylzinc reagents or lower order alkylcyanocuprates. There remains the question of why both the (E) - and $(Z)-\alpha, \beta$-enoates were transformed into the (E)-alkene isosteres.
Although the ground-state and the reactive conformer are not necessarily the same, the ground-state conformations of various types of substrates have been reported to play an important role in the stereochemical outcome of π-facial selectivity. ${ }^{23.24}$ The preferred conformation of many olefinic molecules containing the propene moiety shows a hydrogen atom at the sp^{3}-carbon in the propene moiety eclipsing the double bond (structure 57 in Scheme 10). ${ }^{25}$ In this conformation allylic 1,3 -strain would be minimized. ${ }^{23.26}$ In this context, the preferred conformations of the five N-tosyl γ, δ -epimino- α, β-enoates $9,10,12,13$ and 18 have been studied in $\left[{ }^{2} \mathrm{H}_{8}\right]$ THF by a variable-temperature (VT) ${ }^{1} \mathrm{H}$ NMR technique. $\left[{ }^{2} \mathrm{H}_{8}\right]$ THF was chosen because the reactions with these enoates had been carried out in THF or THF mixtures at $-78{ }^{\circ} \mathrm{C}$. The VT ${ }^{1} \mathrm{H}$ NMR data for compounds $9,10,12,13$ and

Table 2 Reaction of N-tosyl- γ, δ-epimino- α, β-enoates 10, 13, 15, 18, 21 and 22 with organometallic reagents ${ }^{a}$

Entry	Substrate	Reagent ${ }^{\text {b }}$	Conditions	Products (isolated yield) ${ }^{\text {c }}$	
				anti- $\mathrm{S}_{\mathrm{N}} 2^{\prime}$	$\mathrm{S}_{\mathrm{N}} 2$
1	10	$\mathrm{BuCu}(\mathrm{CN}) \mathrm{Li}$	THF-hexane (3:1)	37 (93\%)	38 (6.5\%)
2	10	$\mathrm{Pr}^{\mathbf{i}} \mathrm{Cu}(\mathrm{CN}) \mathrm{MgCl} \cdot 2 \mathrm{LiCl}$	THF	39 (90\%)	40 (8\%)
3	13	$\mathrm{Et}_{2} \mathrm{Zn}, 20 \mathrm{~mol} \% \mathrm{CuCN}$	THF-hexane (2:1)	- ${ }^{\text {d }}$	-.-d
4	13	$\mathrm{Et}_{2} \mathrm{Zn} \cdot 2 \mathrm{LiCl}, 20 \mathrm{~mol} \% \mathrm{CuCN}$	THF-hexane ($2: 1$)	41 (81\%)	42 (2%)
5	13	$\mathrm{EtCu}(\mathrm{CN}) \mathrm{MgCl} \cdot 4 \mathrm{LiCl}$	THF- $\mathrm{Et}_{2} \mathrm{O}$ (4:1)	41 (92\%)	42 (8\%)
6	13	$\mathrm{BuCu}(\mathrm{CN}) \mathrm{Li}$	THF-hexane (4:1)	43 (90\%)	44 (2.5\%)
7	13	$\mathrm{Bu}_{3} \mathrm{ZnLi} \cdot 2 \mathrm{LiCl}, 30 \mathrm{~mol} \% \mathrm{CuCN}$	THF-hexane (4:1)	43 (97\%)	44 (1\%)
8	13	$\mathrm{Pr}^{\mathbf{i}} \mathrm{Cu}(\mathrm{CN}) \mathrm{MgCl} \cdot 2 \mathrm{LiCl}$	THF	45 (97\%)	46 (2\%)
9	13	$\left.\left(\mathrm{Pr}^{\mathbf{i}}\right)^{(}\right) \mathrm{Me}_{2} \mathrm{SiCH}_{2} \mathrm{Cu}(\mathrm{CN}) \mathrm{MgCl} \cdot 2 \mathrm{LiCl}$	THF	47 (75\%)	- ${ }^{\text {d }}$
10	13	$p-\mathrm{FC}_{6} \mathrm{H}_{4} \mathrm{CH}_{2} \mathrm{Cu}(\mathrm{CN}) \mathrm{MgCl} \cdot 2 \mathrm{LiCl}$	THF	48 (98\%)	
11	15	$\mathrm{BuCu}(\mathrm{CN}) \mathrm{Li}$	THF-hexane (3:1)	43 (96\%)	$-{ }^{d}$
12	15	$\left(\mathrm{Pr}^{\mathrm{i}} \mathrm{O}\right) \mathrm{Me}_{2} \mathrm{SiCH}_{2} \mathrm{Cu}(\mathrm{CN}) \mathrm{MgCl} \cdot 2 \mathrm{LiCl}$	THF	47 (83\%)	$-{ }^{\text {d }}$
13	15	$p-\mathrm{FC}_{6} \mathrm{H}_{4} \mathrm{CH}_{2} \mathrm{Cu}(\mathrm{CN}) \mathrm{MgCl} \cdot 2 \mathrm{LiCl}$	THF	$48(98 \%)$	- ${ }^{d}$
14	18	$\mathrm{MeCu}(\mathrm{CN}) \mathrm{Li} \cdot \mathrm{LiBr}$	THF- $\mathrm{Et}_{2} \mathrm{O}(6: 1)$	49 (85\%)	$-{ }^{d}$
15	21	$\mathrm{MeCu}(\mathrm{CN}) \mathrm{Li} \cdot \mathrm{LiBr}$	THF- $\mathrm{Et}_{2} \mathrm{O}(4: 1)$	50 (91\%)	\cdots
16	21	$\mathrm{Me}_{2} \mathrm{Zn} \cdot 2 \mathrm{LiCl} \cdot 2 \mathrm{LiBr}, 20 \mathrm{~mol} \% \mathrm{CuCN}$	THF- $\mathrm{Et}_{2} \mathrm{O}(2: 1)$	$50(99 \%)$	$\cdots{ }_{d}^{d}$
17	22	$\mathrm{MeCu}(\mathrm{CN}) \mathrm{Li} \cdot \mathrm{LiBr}$	THF- $\mathrm{Et}_{2} \mathrm{O}(4: 1)$	51 (81\%)	$-{ }^{d}$
18	22	$\mathrm{Me}_{2} \mathrm{Zn} \cdot 2 \mathrm{LiCl} \cdot 2 \mathrm{LiBr}, 20 \mathrm{~mol} \% \mathrm{CuCN}$	THF- $\mathrm{Et}_{2} \mathrm{O}(2: 1)$	51 (91\%)	$\underline{\text { - }}$

${ }^{a}$ All reactions were carried out with 3-4 mol equiv. of reagents at $-78^{\circ} \mathrm{C}$ for $30 \mathrm{~min} .{ }^{b} \mathrm{MeCu}(\mathrm{CN}) \mathrm{Li}$ has been prepared by treatment of CuCN with ethereal MeLi as the LiBr complex. ${ }^{\text {c All the new compounds have been fully characterized spectrally, and their elemental compositions have been }}$ determined by high-resolution mass spectrometry and/or combustion analysis. Diastereoisomeric purities ($>98 \%$) of all isolated compounds were determined by HPLC. ${ }^{\text {d }}$ Although we can not conclusively rule out its presence, we were unable to isolate the corresponding product.

57

9A
9C

Scheme 10 Three isomeric eclipsed conformers ($9 \mathrm{~A}, \mathrm{CH}$-eclipsed form; 9B, CN-eclipsed form; and 9C, CC-eclipsed form) formed by rotation around the $\mathrm{C}^{B}-\mathrm{C}^{\gamma}$ bond of 9

Fig. 1 Spin-spin coupling constants $\left(J_{\mathbf{H}^{\varepsilon} \mathrm{H}^{\gamma}} / \mathrm{Hz}\right)$ as a function of temperature for $\mathbf{9}(\bigcirc), \mathbf{1 0}(\triangle), \mathbf{1 2}(\diamond) \mathbf{1 3}(\square)$ and $18(*)$

18 are shown in Fig. 1. It was not surprising that all of the enoates displayed a considerably larger three-bond coupling
$\left({ }^{3} J_{\mathrm{H}^{\beta} \mathrm{H}^{*}}\right)$ at 300 K , indicating that the CH -eclipsed form is more populated. As can be seen from Fig. 1, the three-bond coupling constants (${ }^{3} J_{\mathrm{H}^{\mathrm{B}} \mathrm{H}^{*}}$) become larger as the temperature decreases. For example, ${ }^{3} J_{\mathrm{H}^{8} \mathrm{H}^{\gamma}}$ of 9 increased as the temperature was lowered, which indicates that the CH-eclipsed form 9A becomes a favoured conformer rather than the CN eclipsed form 9B or the CC-eclipsed conformer 9C, as shown in Scheme 10 . In other words, the predominant conformer could be represented as 9 A , in which the four atoms ($\mathrm{H}^{\gamma} \mathrm{C}^{\gamma} \mathrm{C}^{\beta} \mathrm{C}^{\alpha}$) are nearly coplanar.

In addition, the NOE data in $\left[{ }^{2} \mathrm{H}_{8}\right]$ THF for the four isomeric (Z)- and (E)-enoates $12,13,15$ and 16 suggest that the preferred conformation could be drawn as depicted in 12a, 13a, 15a and 16a (Scheme 11). This finding agreed closely with that observed in related systems such as vinylcyclopropanes ${ }^{27}$ and vinyloxiranes. ${ }^{28}$ In addition, X-ray analytical data for (Z) - and (E)-substrates 13 and 15 show that the $\mathrm{C}^{\alpha}=\mathrm{C}^{\beta}-\mathrm{C}^{\gamma}-\mathrm{H}^{\gamma}$ dihedral angles are only 9.3° and 1.7°, respectively. ${ }^{5}$ This indicates that the solid-state conformations of $\mathbf{1 3}$ and $\mathbf{1 5}$ are quite similar to those in solution depicted in Scheme 11. Organocopper reagents will attack the α-position on the most abundant conformations of 12a, 13a, 15a and 16a from the less hindered surface anti to the leaving $\mathrm{C}^{r}-\mathrm{N}$ bond to give the overall anti- $\mathrm{S}_{\mathrm{N}} 2^{\prime}$ products having an (E)-double bond as the major or exclusive product.

In summary, we have shown that the reaction of both (E) and (Z)- N-tosyl- γ, δ-epimino- α, β-enoates with trialkylzincates or dialkylzinc in the presence of CuCN , or 'lower order' alkylcyanocuprates proceeds well to give (E)-alkene dipeptide isosteres of very high isomeric purity as the major or exclusive products.

Experimental

General methods

Mps were determined on a hot stage melting point apparatus and are uncorrected. IR spectra were taken on a Shimadzu IR400 spectrometer in chloroform. ${ }^{1} \mathrm{H}$ NMR spectra were recorded using a JEOL EX-270 (270 MHz), a Bruker AC-300 $(300 \mathrm{MHz})$, or a Bruker AM-600 $(600 \mathrm{MHz})$ spectrometer in deuteriochloroform. Chemical shifts are reported in parts per million downfield from internal tetramethylsilane. J-Values are given in Hz . Nominal and exact mass spectra were recorded on

169

(7.3\%) 13a

15a

Scheme 11 Preferred conformations 12a, 13a, 15a and 16a of 12, 13, 15 and 16, respectively, in solution ($\left[{ }^{2} \mathrm{H}_{8}\right] \mathrm{THF} ; 600 \mathrm{MHz} ; 300 \mathrm{~K}$). Observed relevant NOE values are given in parentheses.
a JEOL-JMS-HX-HX-110A mass spectrometer (abbreviations: EI, electron impact; CI, chemical ionization; FAB, fast atom bombardment). Optical rotations were measured on a JASCO DIP- 360 digital polarimeter and are given in units of 10^{-1} deg $\mathrm{cm}^{2} \mathrm{~g}^{-1}$. Circular dichroisms were measured with a JASCO $\mathrm{J}-500 \mathrm{~A}$ spectrometer in isooctane at $30^{\circ} \mathrm{C}$. For flash chromatography, silica gel 60 H (silica gel for thin-layer chromatography, Merck) and/or Wakogel C-200 (silica gel for column chromatography) was employed.

Methyl (4S,2E)-4,5-epimino- N-[(4-methylphenyl)sulfonyl]-pent-2-enoate 9 and methyl ($4 S, 2 \mathrm{Z}$)-4,5-epimino- N - [(4-methyl-phenyl)sulfonyl]pent-2-enoate 10
To a stirred solution of methyl ($2 R$)- N-(4-methylphenyl)-sulfonylaziridine-2-carboxylate $8(20.7 \mathrm{~g}, 81 \mathrm{mmol})$ in $\mathrm{CH}_{2}{ }^{-}$ $\mathrm{Cl}_{2}\left(150 \mathrm{~cm}^{3}\right)$ at $-78{ }^{\circ} \mathrm{C}$ under argon was added dropwise diisobutylaluminium hydride ($1 \mathrm{~mol} \mathrm{dm}{ }^{-3}$ solution in toluene; $98 \mathrm{~cm}^{3}, 98 \mathrm{mmol}, 1.21$ equiv.). After 1 h saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}\left(50 \mathrm{~cm}^{3}\right)$ was added to it with stirring at $-78^{\circ} \mathrm{C}$, followed by (methoxycarbonylmethylene)triphenylphosphorane ($27 \mathrm{~g}, 81 \mathrm{mmol}, 1$ equiv.). The mixture was stirred for 18 h during which time it was allowed to warm to room temperature. The inorganic salts were removed by filtration through Celite. The organic layer was dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated under reduced pressure to give an oil, which was flash chromatographed on silica gel, eluting with hexaneEtOAc (3:1) to give the cis-enoate 10 ($11.6 \mathrm{~g}, 51 \%$). Continued elution gave the trans-enoate $9(6.8 \mathrm{~g}, 28 \%)$.
Compound 9 , colourless crystals, $\mathrm{mp} 45^{\circ} \mathrm{C}$ [from hexane$\mathrm{Et}_{2} \mathrm{O}$ (1:4)] (Found: C, 55.7; H, 5.3; N, 4.9. $\mathrm{C}_{13} \mathrm{H}_{15} \mathrm{O}_{4} \mathrm{NS}$ requires $\mathrm{C}, 55.5 ; \mathrm{H}, 5.4 ; \mathrm{N}, 5.0 \%$); $[\alpha]_{\mathrm{D}}^{20}+78\left(c 1.57\right.$ in $\left.\mathrm{CHCl}_{3}\right)$; $\delta_{\mathrm{H}}\left(300 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 2.27(1 \mathrm{H}, \mathrm{d}, J 4.2, \mathrm{CH} H), 2.45(3 \mathrm{H}, \mathrm{s}$, CMe), 2.88 ($1 \mathrm{H}, \mathrm{d}, J 7.3, \mathrm{C} H \mathrm{H}$), $3.34(1 \mathrm{H}$, dddd, $J 7.5,7.3,4.2$ and $0.8,4-\mathrm{H}), 3.72(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 6.11(1 \mathrm{H}, \mathrm{dd}, J 15.6$ and 0.8 , $2-\mathrm{H}), 6.56$ ($1 \mathrm{H}, \mathrm{dd}, J 15.6$ and $7.5,3-\mathrm{H}), 7.34-7.37(2 \mathrm{H}, \mathrm{m}, \mathrm{Ph})$ and $7.80-7.84(2 \mathrm{H}, \mathrm{m}, \mathrm{Ph})$.

Compound 10, colourless crystals, $\mathrm{mp} 81^{\circ} \mathrm{C}$ (from $\mathrm{Et}_{2} \mathrm{O}$) (Found: C, 55.8; H, 5.4; N, 4.9. $\mathrm{C}_{13} \mathrm{H}_{15} \mathrm{O}_{4} \mathrm{NS}$ requires $\mathrm{C}, 55.5$; $\mathrm{H}, 5.4 ; \mathrm{N}, 5.0 \%$); $[\alpha]_{\mathrm{D}}^{18}-135\left(c 1.05\right.$ in $\left.\mathrm{CHCl}_{3}\right) ; \delta_{\mathrm{H}}(300 \mathrm{MHz}$; $\left.\mathrm{CDCl}_{3}\right) 2.25(1 \mathrm{H}, \mathrm{d}, J 4.3, \mathrm{CH} H), 2.44(3 \mathrm{H}, \mathrm{s}, \mathrm{CMe}), 2.92(1 \mathrm{H}$, d, $J 7.3, \mathrm{CHH}), 3.76(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 4.50(1 \mathrm{H}$, dddd, $J 11.5$, 7.3, 4.3 and $0.9,4-\mathrm{H}), 5.69(1 \mathrm{H}, \mathrm{dd}, J 11.5$ and $8.9,3-\mathrm{H})$, $5.95(1 \mathrm{H}, \mathrm{dd}, J 11.5$ and $0.9,2-\mathrm{H}), 7.32-7.36(2 \mathrm{H}, \mathrm{m}, \mathrm{Ph})$ and 7.82-7.86 ($2 \mathrm{H}, \mathrm{m}, \mathrm{Ph}$).

Methyl (4R,5S,2E)-4,5-epimino- N-[(4-methylphenyl)sulfonyl]-hex-2-enoate 12 and methyl ($4 R, 5 S, 2 Z$)-4,5-epimino- N -

[(4-methylphenyl)sulfonyl] hex-2-enoate 13

By a procedure identical with that described for the preparation of the enoates 9 and $\mathbf{1 0},(2 S, 3 S)$-2-methoxycarbonyl-3-methyl-1-(4-methylphenyl)sulfonylaziridine $11(808 \mathrm{mg}, 3 \mathrm{mmol})$ was converted into the enoates $12(51.4 \mathrm{mg}, 6 \%)$ and $13(803.6 \mathrm{mg}$, 91%) by treatment with diisobutylaluminium hydride (1.02 mol dm^{-3} solution in toluene; $3.23 \mathrm{~cm}^{3}, 3.3 \mathrm{mmol}, 1.1$ equiv.), followed by (methoxycarbonylmethylene)triphenylphosphorane ($1 \mathrm{~g}, 3 \mathrm{mmol}, 1$ equiv.).
By using the sodium salt of trimethylphosphonoacetate instead of (methoxycarbonylmethylene)triphenylphosphorane the trans-enoate 12 was obtained as the major product (12:13 $=83: 17 ; 92 \%$ combined yield). To a stirred solution of the ester $11(808 \mathrm{mg}, 3 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(10 \mathrm{~cm}^{3}\right)$ at $-78{ }^{\circ} \mathrm{C}$ under argon was added dropwise diisobutylaluminium hydride ($1.02 \mathrm{~mol} \mathrm{dm}^{-3}$ solution in toluene; $3.23 \mathrm{~cm}^{3}, 3.3 \mathrm{mmol}, 1.1$ equiv.). After 0.5 h saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}\left(1 \mathrm{~cm}^{3}\right)$ was added to it with stirring at $-78^{\circ} \mathrm{C}$, followed by a solution of the sodium salt of trimethylphosphonoacetate $\left(0.72 \mathrm{~mol} \mathrm{dm}^{-3}\right.$ solution in DMF; $12.5 \mathrm{~cm}^{3}, 9 \mathrm{mmol}, 3$ equiv.). The mixture was stirred for 2 h during which time it was allowed to warm to $0^{\circ} \mathrm{C}$. The mixture was poured into 1% hydrochloric acid $\left(10 \mathrm{~cm}^{3}\right)$ at $0^{\circ} \mathrm{C}$ with vigorous stirring, and the whole was extracted with EtOAc. The extract was washed successively with water, 10% aqueous citric acid, water, saturated aqueous NaHCO_{3} and water, then dried $\left(\mathrm{MgSO}_{4}\right)$. Concentration under reduced pressure gave an oily residue, which was purified by flash chromatography over silica gel with hexane-EtOAc (3:1) to give the cis-enoate 13 ($139 \mathrm{mg}, 16 \%$). Continued elution gave the trans-enoate 12 ($678 \mathrm{mg}, 76 \%$).
Compound 12, colourless crystals, mp $92-93^{\circ} \mathrm{C}$ [from hexane- $\mathrm{Et}_{2} \mathrm{O}$ (1:3)] (Found: C, 56.8; H, 5.8; N, 4.6. $\mathrm{C}_{14} \mathrm{H}_{17} \mathrm{NO}_{4}$ S requires C, $56.9 ; \mathrm{H}, 5.8 ; \mathrm{N}, 4.7 \%$); [$\left.\alpha\right]_{\mathrm{D}}^{32}-89(c$ 0.725 in $\left.\mathrm{CHCl}_{3}\right) ; v_{\text {max }} / \mathrm{cm}^{-1} 1710(\mathrm{CO})$ and $1653(\mathrm{C}=\mathrm{C}) ; \delta_{\mathrm{H}}(200$ $\mathrm{MHz} ; \mathrm{CDCl}_{3}$) 1.21 ($3 \mathrm{H}, \mathrm{d}, J 5.9, \mathrm{CMe}$), 2.45 ($3 \mathrm{H}, \mathrm{s}, \mathrm{CMe}$), 3.14 $(1 \mathrm{H}, \mathrm{m}, 5-\mathrm{H}), 3.40(1 \mathrm{H}$, ddd, $J .6,6.6$ and $1.0,4-\mathrm{H}), 3.72(3 \mathrm{H}$, s, OMe), 6.07 (1 H , dd, $J 15.6$ and $1.0,2-\mathrm{H}), 6.66(1 \mathrm{H}, \mathrm{dd}, J 15.6$ and 6.6, 3-H), 7.31-7.37 ($2 \mathrm{H}, \mathrm{m}, \mathrm{Ph}$) and 7.78-7.84 ($2 \mathrm{H}, \mathrm{m}$, $\mathrm{Ph})$.
Compound 13, colourless crystals, $\mathrm{mp} 75-77^{\circ} \mathrm{C}$ [from hexane- $\mathrm{Et}_{2} \mathrm{O}-\mathrm{CH}_{2} \mathrm{Cl}_{2}(4: 4: 1)$ (Found: $\mathrm{C}, 56.9 ; \mathrm{H}, 5.8 ; \mathrm{N}, 4.5$. $\mathrm{C}_{14} \mathrm{H}_{17} \mathrm{NO}_{4} \mathrm{~S}$ requires C, $56.9 ; \mathrm{H}, 5.8 ; \mathrm{N}, 4.7 \%$); $[\alpha]_{\mathrm{D}}^{27}+10.1$ (c 0.915 in CHCl_{3}); $v_{\text {max }} / \mathrm{cm}^{-1} 1720(\mathrm{CO})$ and $1644(\mathrm{C}=\mathrm{C})$; $\delta_{\mathrm{H}}\left(200 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 1.22(3 \mathrm{H}, \mathrm{d}, J 5.9$, CMe), $2.44(3 \mathrm{H}, \mathrm{s}$, CMe), 3.15 ($1 \mathrm{H}, \mathrm{m}, 5-\mathrm{H}$), 3.76 ($3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}$), $4.36(1 \mathrm{H}, \mathrm{d}, J 7.6$ and $0.7,4-\mathrm{H}), 5.88(1 \mathrm{H}, \mathrm{dd}, J 11.7$ and $7.6,3-\mathrm{H}), 6.01(1 \mathrm{H}, \mathrm{dd}$, $J 11.7$ and $0.7,2-\mathrm{H}), 7.31-7.35(2 \mathrm{H}, \mathrm{m}, \mathrm{Ph})$ and $7.80-7.84(2 \mathrm{H}$, m, Ph).

Methyl (4S,5S,2E)-4,5-epimino- N-[(4-methylphenyl)sulfonyl]-hex-2-enoate 15 and methyl ($4 S, 5 S, 2 Z$)-4,5-epimino- N -
 [(4-methylphenyl)sulfonyl] hex-2-enoate 16

By a procedure identical with that described for the preparation of the enoates 9 and $\mathbf{1 0},(2 R, 3 S)$-2-methoxycarbonyl-3-methyl-1-(4-methylphenyl)sulfonylaziridine 14 ($200 \mathrm{mg}, 0.743 \mathrm{mmol}$) was converted into the enoates 15 ($104 \mathrm{mg}, 47 \%$) and 16 (44.4 $\mathrm{mg}, 20 \%$) by treatment with diisobutylaluminium hydride (0.93
$\mathrm{mol} \mathrm{dm}{ }^{-3}$ solution in toluene; $2.4 \mathrm{~cm}^{3}, 2.23 \mathrm{mmol}$, 3 equiv.), followed by (methoxycarbonylmethylene)triphenylphosphorane ($497 \mathrm{mg}, 1.49 \mathrm{mmol}, 2$ equiv.).

Compound 15, colourless crystals, $\mathrm{mp} 84^{\circ} \mathrm{C}$ (from $\mathrm{Et}_{2} \mathrm{O}$) (Found: C, 56.8; H, 5.8; N, 4.7. $\mathrm{C}_{14} \mathrm{H}_{17} \mathrm{NO}_{4} \mathrm{~S}$ requires $\mathrm{C}, 56.9$; $\mathrm{H}, 5.8 ; \mathrm{N}, 4.7 \%) ;[\alpha]_{\mathrm{D}}^{20}+28.4\left(c 1.07\right.$ in $\left.\mathrm{CHCl}_{3}\right) ; v_{\text {max }} / \mathrm{cm}^{-1}$ $1720(\mathrm{CO}), 1655$ and $1603(\mathrm{C}=\mathrm{C}) ; \delta_{\mathbf{H}}\left(200 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 1.54$ (3 $\mathrm{H}, \mathrm{d}, J 5.9, \mathrm{CMe}), 2.44$ ($3 \mathrm{H}, \mathrm{s}, \mathrm{CMe}$), 3.01 (1 H , ddd, $J 11.5,5.6$ and $4.1,5-\mathrm{H}), 3.21(1 \mathrm{H}$, dd, $J 8.8$ and $4.1,4-\mathrm{H}), 3.73(3 \mathrm{H}, \mathrm{s}$, OMe), $6.08(1 \mathrm{H}, \mathrm{d}, J 15.6,2-\mathrm{H}), 6.87(1 \mathrm{H}, \mathrm{dd}, J 15.6$ and 8.8 , $3-\mathrm{H}), 7.30-7.34(2 \mathrm{H}, \mathrm{m}, \mathrm{Ph})$ and $7.79-7.84(2 \mathrm{H}, \mathrm{m}, \mathrm{Ph})$.

Compound 16, colourless crystals, mp $51^{\circ} \mathrm{C}$ [from hexane$\mathrm{Et}_{2} \mathrm{O}$ (1:2)] [Found (EI): M^{+}, 295.0887. $\mathrm{C}_{14} \mathrm{H}_{17} \mathrm{O}_{4} \mathrm{NS}$ requires $M, 295.0878] ;[\alpha]_{\mathrm{D}}^{20}-181$ (c 1.13 in CHCl_{3}); $v_{\max } / \mathrm{cm}^{-1} 1720(\mathrm{CO}), 1645$ and $1601(\mathrm{C}=\mathrm{C}) ; \delta_{\mathrm{H}}(200 \mathrm{MHz}$; $\left.\mathrm{CDCl}_{3}\right) 1.50(3 \mathrm{H}, \mathrm{d}, J 5.6, \mathrm{CMe}), 2.44(3 \mathrm{H}, \mathrm{s}, \mathrm{CMe}), 3.01(1 \mathrm{H}$, ddd, $J 11.5,5.9$ and $4.2,5-\mathrm{H}), 3.75(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 4.42(1 \mathrm{H}, \mathrm{dd}$, $J 9.3$ and $4.2,4-\mathrm{H}), 6.01(1 \mathrm{H}, \mathrm{d}, J 11.5,2-\mathrm{H}), 6.23(1 \mathrm{H}, \mathrm{dd}, J$ 11.5 and $9.3,3-\mathrm{H}), 7.30-7.34(2 \mathrm{H}, \mathrm{m}, \mathrm{Ph})$ and $7.80-7.84(2 \mathrm{H}$, $\mathrm{m}, \mathrm{Ph}) ; m / z(\mathrm{EI}) 295\left(\mathrm{M}^{+}\right), 280,264,198,155,140$ (base peak), 112, 108, 99 and 91 .

Methyl (4S,5S,2E)-4,5-epimino- N-(4-methylphenyl)sulfonyl-5-phenylpent-2-enoate 18 and methyl ($4 S, 5 S, 2 Z$)-4,5-epimino- N -(4-methylphenyl)sulfonyl-5-phenylpent-2-enoate 19

To a stirred solution of oxalyl chloride $\left(0.26 \mathrm{~cm}^{3}, 3 \mathrm{mmol}, 1.5\right.$ equiv.) in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(20 \mathrm{~cm}^{3}\right)$ at $-78^{\circ} \mathrm{C}$ under argon was added dropwise a solution of DMSO $\left(0.71 \mathrm{~cm}^{3}, 10 \mathrm{mmol}, 5\right.$ equiv.) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(2 \mathrm{~cm}^{3}\right)$. After 20 min , a solution of the 3-phenylaziridin-2-ylmethanol $17(600 \mathrm{mg}, 2 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ ($2 \mathrm{~cm}^{3}$) was added to the above reagent at $-78^{\circ} \mathrm{C}$, and the mixture was stirred for 30 min when diisopropylethylamine ($0.7 \mathrm{~cm}^{3}, 40 \mathrm{mmol}, 20$ equiv.) was added dropwise to the above solution at $-78^{\circ} \mathrm{C}$, and the mixture was stirred for 0.5 h at that temperature. (Methoxycarbonylmethylene)triphenylphosphorane ($1.34 \mathrm{~g}, 4 \mathrm{mmol}, 2$ equiv.) was added to the mixture at $-78^{\circ} \mathrm{C}$, and the mixture was stirred for 2 h during which time it was allowed to warm to $0^{\circ} \mathrm{C}$. The mixture was extracted with $\mathrm{Et}_{2} \mathrm{O}$ and the extract was washed successively with water, 10% aqueous citric acid, water, saturated aqueous $\mathrm{NaHCO} \mathrm{H}_{3}$ and water, and dried $\left(\mathrm{MgSO}_{4}\right)$. Concentration under reduced pressure gave an oily residue, which was flash chromatographed on silica gel, eluting with hexane-EtOAc ($3: 1$) to give the trans-enoate $\mathbf{1 8}(370 \mathrm{mg}$, 52%) as a colourless oil. The cis-isomer 19 could not be isolated in a pure state due to its instability.

Compound 18, colourless oil [Found (FAB): $(\mathrm{M}+\mathrm{H})^{+}$, 358.1116. $\mathrm{C}_{19} \mathrm{H}_{20} \mathrm{NO}_{4} \mathrm{~S}$ requires $\left.M+\mathrm{H}, 358.1113\right] ;[\alpha]_{\mathrm{D}}^{20}-$ $34\left(c 0.97\right.$ in $\left.\mathrm{CHCl}_{3}\right) ; \delta_{\mathrm{H}}\left(270 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 2.41(3 \mathrm{H}, \mathrm{s}, \mathrm{CMe})$, $3.43(1 \mathrm{H}, \mathrm{dd}, J 10.2$ and $3.6,4-\mathrm{H}), 3.78(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 4.14$ $(1 \mathrm{H}, \mathrm{d}, J 3.6,5-\mathrm{H}), 6.20(1 \mathrm{H}, \mathrm{d}, J 15.5,2-\mathrm{H}), 7.16-7.36$ (8 $\mathrm{H}, \mathrm{m}, \mathrm{Ph}$ and $3-\mathrm{H}$) and $7.84(2 \mathrm{H}, \mathrm{m}, \mathrm{Ph}) ; m / z$ FAB-LRMS $358\left(\mathrm{MH}^{+}\right), 326,298,202$ (base peak), 171, 155, 144, 115 and 91.

Methyl (4S,5R,2E)-4,5-epimino- N-(4-methylphenyl)sulfonyl-5-phenylpent-2-enoate 21 and methyl $(4 S, 5 R, 2 Z)-4,5-$ epimino- N -(4-methylphenyl)sulfonyl-5-phenylpent-2-enoate 22
By a procedure identical with that described for the preparation of the enoate $18,(2 R, 3 R)-N$-(4-methylphenyl) sulfonyl-3-phenylaziridin-2-ylmethanol $20(6.07 \mathrm{~g}, 20 \mathrm{mmol})$ was converted into the enoates $21(2.08 \mathrm{~g}, 29 \%)$ and $22(4.96 \mathrm{~g}$, 69.5%).

Compound 21, colourless crystals, $\mathrm{mp} 148^{\circ} \mathrm{C}$ [from hexane$\mathrm{Et}_{2} \mathrm{O}$ (1:1)] (Found: C, 63.6; H, 5.3; N, 3.7. $\mathrm{C}_{19} \mathrm{H}_{19} \mathrm{NO}_{4} \mathrm{~S}$ requires $\mathrm{C}, 63.9 ; \mathrm{H}, 5.4 ; \mathrm{N}, 3.9 \%$); $[\alpha]_{\mathrm{D}}^{20}-46.1$ (c 0.75 in $\left.\mathrm{CHCl}_{3}\right) ; \delta_{\mathrm{H}}\left(270 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 2.45(3 \mathrm{H}, \mathrm{s}, \mathrm{CMe}), 3.64(3 \mathrm{H}, \mathrm{s}$, OMe), $3.69(1 \mathrm{H}, \mathrm{dd}, J 7.6$ and $7.3,4-\mathrm{H}), 4.18(1 \mathrm{H}, \mathrm{d}, J 7.3$,
$5-\mathrm{H}), 6.09(1 \mathrm{H}, \mathrm{d}, J 15.7,2-\mathrm{H}), 6.33(1 \mathrm{H}, \mathrm{dd}, J 15.7$ and 7.6 , 3-H), 7.19-7.31 ($5 \mathrm{H}, \mathrm{m}, \mathrm{Ph}$), 7.34-7.37 (2 H, m, Ph) and 7.877.90 ($2 \mathrm{H}, \mathrm{m}, \mathrm{Ph}$).

Compound 22, colourless oil (Found: C, 63.8; H, 5.3; N, 3.8. $\mathrm{C}_{19} \mathrm{H}_{19} \mathrm{NO}_{4} \mathrm{~S}$ requires $\left.\mathrm{C}, 63.9 ; \mathrm{H}, 5.4 ; \mathrm{N}, 3.9 \%\right) ;[\alpha]_{\mathrm{D}}^{20}+71.9$ $\left(c 0.69\right.$ in $\left.\mathrm{CHCl}_{3}\right) ; \delta_{\mathrm{H}}\left(270 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 2.44(3 \mathrm{H}, \mathrm{s}, \mathrm{CMe}), 3.75$ ($3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}$), $4.18(1 \mathrm{H}, \mathrm{d}, J 7.3,5-\mathrm{H}), 4.76(1 \mathrm{H}$, ddd, $J 8.6,7.3$ and $0.8,4-\mathrm{H}), 5.59(1 \mathrm{H}, \mathrm{dd}, J 11.6$ and $8.6,3-\mathrm{H}), 5.85(1 \mathrm{H}$, dd, $J 11.6$ and $0.8,2-\mathrm{H}), 7.22-7.29(5 \mathrm{H}, \mathrm{m}, \mathrm{Ph}), 7.33-7.36(2 \mathrm{H}, \mathrm{m}$, $\mathrm{Ph})$ and 7.88-7.93 ($2 \mathrm{H}, \mathrm{m}, \mathrm{Ph}$).

Methyl (5S,3E)-5-[(4-methylphenyl)sulfonylamino]hex-3enoate 23

To a stirred slurry of $\mathrm{CuCN}(121.5 \mathrm{mg}, 1.36 \mathrm{mmol}, 4$ equiv.) in dry THF ($3 \mathrm{~cm}^{3}$) under argon was added via syringe $\mathrm{MeLi} \cdot \mathrm{LiBr}$ ($1.5 \mathrm{~mol} \mathrm{dm}^{-3}$ solution in $\mathrm{Et}_{2} \mathrm{O} ; 1.8 \mathrm{~cm}^{3}, 2.7 \mathrm{mmol}, 8$ equiv.) at $-78^{\circ} \mathrm{C}$, and the mixture was allowed to warm to $0^{\circ} \mathrm{C}$ and was stirred at this temperature for 15 min . A solution of the α, β enoate $12(100 \mathrm{mg}, 0.34 \mathrm{mmol})$ in dry THF $\left(3 \mathrm{~cm}^{3}\right)$ was added dropwise to the above reagent at $-78^{\circ} \mathrm{C}$ with stirring, and the stirring was continued for 30 min followed by quenching with aqueous saturated $\mathrm{NH}_{4} \mathrm{Cl}-28 \% \mathrm{NH}_{4} \mathrm{OH}\left(1: 1 ; 2 \mathrm{~cm}^{3}\right)$. The mixture was extracted with $\mathrm{Et}_{2} \mathrm{O}-\mathrm{CH}_{2} \mathrm{Cl}_{2}(4: 1)$ and the extract was washed with water and dried $\left(\mathrm{MgSO}_{4}\right)$. Concentration under reduced pressure gave an oily residue, which was flash chromatographed on silica gel, eluting with hexane-EtOAc (4:1) to give the reduction product $23(72.5 \mathrm{mg}, 72 \%)$ as a colourless oil. By a procedure identical with that described above for the reaction of 12 with $\mathrm{Me}_{2} \mathrm{Cu}(\mathrm{CN}) \mathrm{Li}_{2} \cdot 2 \mathrm{LiBr}$, the α, β-enoate 13 ($100 \mathrm{mg}, 0.34 \mathrm{mmol}$) was converted into the reduction product $23(85.2 \mathrm{mg}, 85 \%)$ by treatment with $\mathrm{Me}_{2} \mathrm{Cu}(\mathrm{CN}) \mathrm{Li}_{2} \cdot 2 \mathrm{LiBr}(1.36 \mathrm{mmol})$ in $\mathrm{THF}-\mathrm{Et}_{2} \mathrm{O}(2: 1)$ at $-78^{\circ} \mathrm{C}$ for 30 min , colourless oil [Found (EI): \mathbf{M}^{+}, 297.1042. $\mathrm{C}_{14} \mathrm{H}_{19} \mathrm{NO}_{4} \mathrm{~S}$ requires $\left.M, 297.1035\right] ;[\alpha]_{\mathrm{D}}^{20}-27.8$ (c 0.842 in CHCl_{3}); $v_{\text {max }} / \mathrm{cm}^{-1} 3390(\mathrm{NH}), 1733(\mathrm{CO})$ and $1600(\mathrm{C}=\mathrm{C}) ; \delta_{\mathrm{H}}\left(300 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 1.18(3 \mathrm{H}, \mathrm{d}, J 6.8, \mathrm{CMe})$, $2.42(3 \mathrm{H}, \mathrm{s}, \mathrm{CMe}), 2.91(1 \mathrm{H}, \mathrm{s}, \mathrm{CHH}), 2.94(1 \mathrm{H}, \mathrm{s}, \mathrm{CHH})$, 3.67 ($3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}$), $3.89(1 \mathrm{H}, \mathrm{m}, 5-\mathrm{H}), 4.52(1 \mathrm{H}, \mathrm{m}, \mathrm{NH})$, $5.36(1 \mathrm{H}$, dddd, $J 15.5,6.2,1.4$ and $1.4, \mathrm{CH}=), 5.52(1 \mathrm{H}$, dddd, $J 15.5,6.9,6.9$ and $1.4, \mathrm{CH}=), 7.27-7.30(2 \mathrm{H}, \mathrm{m}, \mathrm{Ph})$ and 7.71-7.76 (2 H, m, Ph); m / z (EI) $297\left(\mathrm{M}^{+}\right), 282,250,238,155$, 142 (base peak), 110 and 91 .

Methyl (4S,5S,2E)-4-methyl-5-[(4-methylphenyl)sulfonylamino] hex-2-enoate 24 and methyl ($2 R, 5 S, 3 E$)-2-methyl-5-[(4-methylphenyl)sulfonylamino] hex-3-enoate 25

To a stirred slurry of $\mathrm{CuCN}(179.2 \mathrm{mg}, 2 \mathrm{mmol})$ in dry THF (12 cm^{3}) under argon was added via syringe $\mathrm{MeLi} \cdot \mathrm{LiBr}(0.96 \mathrm{~mol}$ dm^{-3} solution in $\mathrm{Et}_{2} \mathrm{O} ; 2.08 \mathrm{~cm}^{3}, 2 \mathrm{mmol}, 4$ equiv.) at $-78^{\circ} \mathrm{C}$, and the mixture was allowed to warm to $0^{\circ} \mathrm{C}$ and stirred at this temperature for 15 min . A solution of the α, β-enoate 12 (148 $\mathrm{mg}, 0.5 \mathrm{mmol})$ in dry THF ($2 \mathrm{~cm}^{3}$) was then added dropwise to the above reagent at $-78^{\circ} \mathrm{C}$ with stirring, and stirring was continued for 30 min followed by quenching with aqueous saturated $\mathrm{NH}_{4} \mathrm{Cl}-28 \% \mathrm{NH}_{4} \mathrm{OH}\left(1: 1 ; 2 \mathrm{~cm}^{3}\right)$. The mixture was extracted with $\mathrm{Et}_{2} \mathrm{O}-\mathrm{CH}_{2} \mathrm{Cl}_{2}(4: 1)$ and the extract was washed with water and dried $\left(\mathrm{MgSO}_{4}\right)$. Concentration under reduced pressure gave a mixture of products as a colourless oil, which was separated by flash chromatography over silica gel eluting with hexane-EtOAc (4:1), to give, in order of elution, the $\mathrm{S}_{\mathrm{N}} 2$ product $24(4.7 \mathrm{mg}, 3 \%)$ and the anti- $\mathrm{S}_{\mathrm{N}} 2^{\prime}$-product $25(143 \mathrm{mg}$, 92%).

Compound 24, colourless crystals, $\mathrm{mp} 99^{\circ} \mathrm{C}$ [from hexane$\left.\mathrm{Et}_{2} \mathrm{O}(1: 5)\right]$ (Found: $\mathrm{C}, 57.7 ; \mathrm{H}, 6.7 ; \mathrm{N}, 4.5 . \mathrm{C}_{15} \mathrm{H}_{21} \mathrm{NO}_{4} \mathrm{~S}$ requires $\mathrm{C}, 57.9 ; \mathrm{H}, 6.8 ; \mathrm{N}, 4.5 \%) ; \delta_{\mathrm{H}}\left(300 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 0.96(3$ $\mathrm{H}, \mathrm{d}, J 6.8, \mathrm{CMe}), 1.01$ ($3 \mathrm{H}, \mathrm{d}, J 6.9, \mathrm{CMe}$), 2.42 ($1 \mathrm{H}, \mathrm{m}, 4-\mathrm{H}$), 2.43 ($3 \mathrm{H}, \mathrm{s}, \mathrm{CMe}$), 3.35 ($1 \mathrm{H}, \mathrm{m}, 5-\mathrm{H}$), 3.72 ($3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}$), 4.35 ($1 \mathrm{H}, \mathrm{d}, J 8.8, \mathrm{NH}), 5.77(1 \mathrm{H}, \mathrm{dd}, J 15.7$ and $1.1,2-\mathrm{H}), 6.76(1$

H , dd, $J 15.7$ and 8.3, 3-H), 7.28-7.31 ($2 \mathrm{H}, \mathrm{m}, \mathrm{Ph}$) and $7.73-$ $7.77(2 \mathrm{H}, \mathrm{m}, \mathrm{Ph})$. The ${ }^{1} \mathrm{H}$ NMR spectrum is identical with that of the authentic sample of $\mathbf{2 4}$ prepared from the protected amino alcohol 35.
Compound 25, colourless oil [Found (EI): $\mathbf{M}^{+}, 311.1182$. $\mathrm{C}_{15} \mathrm{H}_{21} \mathrm{NO}_{4} \mathrm{~S}$ requires $M, 311.1191$; $[\alpha]_{\mathrm{D}}^{20}-52.5$ (c 0.942 in CHCl_{3}); $\Delta \varepsilon-0.62$ (213.6 nm in isooctane); $v_{\text {max }} / \mathrm{cm}^{-1} 3400$, $3275(\mathrm{NH}), 1728(\mathrm{CO})$ and $1601(\mathrm{C}=\mathrm{C}) ; \delta_{\mathrm{H}}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ 1.11 ($3 \mathrm{H}, \mathrm{d}, J 7.1, \mathrm{CMe}$), 1.17 (3 H, d, J 6.7, CMe), 2.42 (3 H , s, CMe), 2.99 ($1 \mathrm{H}, \mathrm{m}, 2-\mathrm{H}$), $3.66(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 3.89(1 \mathrm{H}, \mathrm{m}$, $5-\mathrm{H}), 4.53(1 \mathrm{H}, \mathrm{d}, J 7.5, \mathrm{NH}), 5.32(1 \mathrm{H}$, ddd, $J 15.5,6.3$ and 1.1, $\mathrm{CH}=), 5.54(1 \mathrm{H}$, ddd, $J 15.5,7.6$ and $1.1, \mathrm{CH}=), 7.27-$ $7.30(2 \mathrm{H}, \mathrm{m}, \mathrm{Ph})$ and $7.72-7.76(2 \mathrm{H}, \mathrm{m}, \mathrm{Ph}) ; m /=$ (EI) 311 $\left(\mathrm{M}^{+}\right), 296,264,252,224,198,156$ (base peak), 140, 124 and 91.

Methyl (2R,5S,3E)-2-methyl-5-[(4-methylphenyl)sulfonylamino]hex-3-enoate 25 and methyl ($4 R, 5 S, 2 Z$)-4-methyl-5-[(4-methylphenyl)sulfonylamino] hex-2-enoate 26
To a stirred solution of ZnCl_{2} ($1 \mathrm{~mol} \mathrm{dm}{ }^{-3}$ solution in $\mathrm{Et}_{2} \mathrm{O} ; 2$ $\mathrm{cm}^{3}, 2$ mmol, 4 equiv.) in THF ($4 \mathrm{~cm}^{3}$) at $-78^{\circ} \mathrm{C}$ under argon was added via syringe $\mathrm{MeLi} \cdot \mathrm{LiBr}\left(1.5 \mathrm{~mol} \mathrm{dm}{ }^{-3}\right.$ solution in $\mathrm{Et}_{2} \mathrm{O} ; 2.67 \mathrm{~cm}^{3}, 4 \mathrm{mmol}, 8$ equiv.), and the mixture was allowed to warm to $0^{\circ} \mathrm{C}$ and stirred at this temperature for 10 min . Cuprous cyanide ($35.8 \mathrm{mg}, 0.4 \mathrm{mmol}$) was added to the above mixture at $-78^{\circ} \mathrm{C}$ and the mixture was stirred for 5 min . A solution of the α, β-enoate 16 ($148 \mathrm{mg}, 0.5 \mathrm{mmol}$) in dry THF (2 cm^{3}) was added dropwise to the above reagent at $-78^{\circ} \mathrm{C}$ with stirring, and the stirring was continued for 30 min followed by quenching with aqueous saturated $\mathrm{NH}_{4} \mathrm{Cl}-28 \% \mathrm{NH}_{4} \mathrm{OH}(1: 1$; $4 \mathrm{~cm}^{3}$). The mixture was extracted with $\mathrm{Et}_{2} \mathrm{O}-\mathrm{CH}_{2} \mathrm{Cl}_{2}(4: 1)$ and the extract was washed with water and dried $\left(\mathrm{MgSO}_{4}\right)$. Concentration under reduced pressure gave a mixture of products as a colourless oil, which was separated by flash chromatography over silica gel eluting with hexane-EtOAc ($4: 1$), to give, in order of elution, $26(7.3 \mathrm{mg}, 5 \%$) and 25 (148 $\mathrm{mg}, 95 \%$).
Compound 25, colourless oil [Found (EI): $\mathbf{M}^{+}, 311.1182$. $\mathrm{C}_{15} \mathrm{H}_{21} \mathrm{NO}_{4} \mathrm{~S}$ requires $M, 311.1191$); $[\alpha]_{\mathrm{D}}^{20}-58(c 0.414$ in CHCl_{3}); $v_{\text {max }} / \mathrm{cm}^{-1} 3400,3275(\mathrm{NH}), 1728(\mathrm{CO})$ and 1600 (C=C); $\delta_{\mathrm{H}}\left(270 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 1.11$ ($3 \mathrm{H}, \mathrm{d}, J 7.0, \mathrm{CMe}$), 1.17 (3 $\mathrm{H}, \mathrm{d}, J 6.5, \mathrm{CMe}), 2.42(3 \mathrm{H}, \mathrm{s}, \mathrm{CMe}), 2.99(1 \mathrm{H}, \mathrm{m}, 2-\mathrm{H}), 3.65$ (3 $\mathrm{H}, \mathrm{s}, \mathrm{OMe}), 3.89(1 \mathrm{H}, \mathrm{m}, 5-\mathrm{H}), 4.57(1 \mathrm{H}, \mathrm{m}, \mathrm{NH})$, $5.32(1 \mathrm{H}$, ddd, $J 15.5,6.3$ and $1.1, \mathrm{CH}=), 5.54(1 \mathrm{H}$, ddd, $J 15.5,7.6$ and 1.1, $\mathrm{CH}=$), 7.27-7.30 ($2 \mathrm{H}, \mathrm{m}, \mathrm{Ph}$) and 7.71-7.75 ($2 \mathrm{H}, \mathrm{m}, \mathrm{Ph}$); m / z (EI) 311 (M $^{+}$), 296, 264, 252, 224, 198, 156 (base peak), 140, 124 and 91.

Compound 26, colourless oil; $[\alpha]_{\mathrm{D}}^{20}-95.3$ (c 0.445 in $\left.\mathrm{CHCl}_{3}\right)$; $v_{\text {max }}\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 3370(\mathrm{NH}), 1709(\mathrm{CO}), 1645$ and $1603(\mathrm{C}=\mathrm{C}) ; \delta_{\mathrm{H}}\left(200 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 0.96$ ($3 \mathrm{H}, \mathrm{d}, J 6.4, \mathrm{CMe}$), 1.08 ($3 \mathrm{H}, \mathrm{d}, J 6.5, \mathrm{CMe}$), $2.42(3 \mathrm{H}, \mathrm{s}, \mathrm{CMe}), 3.18(1 \mathrm{H}, \mathrm{m}, 5-\mathrm{H})$, $3.32(1 \mathrm{H}, \mathrm{m}, 4-\mathrm{H}), 3.72(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 5.07(1 \mathrm{H}, \mathrm{d}, J 7.8, \mathrm{NH})$, $5.66(1 \mathrm{H}, \mathrm{d}, J 11.5,2-\mathrm{H}), 5.74(1 \mathrm{H}, \mathrm{dd}, J 11.5$ and $9.3,3-\mathrm{H})$, 7.26-7.30 ($2 \mathrm{H}, \mathrm{m}, \mathrm{Ph}$) and 7.67-7.72 ($2 \mathrm{H}, \mathrm{m}, \mathrm{Ph}$). The spectral data (IR, ${ }^{1} \mathrm{H}$ NMR) for 26 are identical with those of an authentic sample of $\mathbf{2 6}$ prepared from 36 .

Methyl (4S,5S,2Z)-4-methyl-5-[(4-methylphenyl)sulfonyl-amino]hex-2-enoate 27 and methyl ($2 S, 5 S, 3 E$)-2-methyl-5-[(4-methylphenyl)sulfonylamino] hex-3-enoate 28

By a procedure identical with that described for the reaction of 12 with $\mathrm{MeCu}(\mathrm{CN}) \mathrm{Li} \cdot \mathrm{LiBr}$, the enoate $\mathbf{1 3}(295 \mathrm{mg}, 1 \mathrm{mmol})$ was converted into a mixture of the enoates 27 and 28 by treatment with $\mathrm{MeCu}(\mathrm{CN}) \mathrm{Li} \cdot \mathrm{LiBr}(4 \mathrm{mmol})$ in $\mathrm{THF}-\mathrm{Et}_{2} \mathrm{O}(5: 1)$ at $-78^{\circ} \mathrm{C}$ for 30 min . The mixture of products was separated by flash chromatography over silica gel eluting with hexaneEtOAc (4:1), to give, in order of elution, the $\mathrm{S}_{\mathrm{N}} 2$-product 27 ($19 \mathrm{mg}, 6 \%$) and the anti- $\mathrm{S}_{\mathrm{N}} 2^{\prime}$-product $28(289 \mathrm{mg}, 93 \%)$.

Compound 27, colourless crystals, mp $92{ }^{\circ} \mathrm{C}$ [from hexane$\mathrm{Et}_{2} \mathrm{O}$ (4:1)] [Found (EI): M^{+}, 311.1182. $\mathrm{C}_{15} \mathrm{H}_{21} \mathrm{NO}_{4} \mathrm{~S}$ requires $M, 311.1190] ;[\alpha]_{D}^{20}+6.0\left(c 0.601\right.$ in $\left.\mathrm{CHCl}_{3}\right)$; $v_{\max } / \mathrm{cm}^{-1} 3400,3220(\mathrm{NH}), 1713(\mathrm{CO}), 1645$ and $1602(\mathrm{C}=\mathrm{C})$; $\delta_{\mathrm{H}}\left(200 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 0.95(3 \mathrm{H}, \mathrm{d}, J 6.8, \mathrm{CMe}), 1.01(3 \mathrm{H}, \mathrm{d}, J$ 6.6, CMe), 2.43 ($3 \mathrm{H}, \mathrm{s}, \mathrm{CMe}$), 3.27 ($1 \mathrm{H}, \mathrm{m}, 5-\mathrm{H}$), 3.41 ($1 \mathrm{H}, \mathrm{m}$, $4-\mathrm{H}), 3.72(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 5.04(1 \mathrm{H}, \mathrm{d}, J 7.8, \mathrm{NH}), 5.79(1 \mathrm{H}, \mathrm{d}, J$ $11.7,2-\mathrm{H}), 6.01(1 \mathrm{H}, \mathrm{dd}, J 11.7$ and $10.0,3-\mathrm{H}), 7.28-7.32(2 \mathrm{H}$, $\mathrm{m}, \mathrm{Ph})$ and $7.76-7.80(2 \mathrm{H}, \mathrm{m}, \mathrm{Ph}) ; m / z(\mathrm{EI}) 311\left(\mathrm{M}^{+}\right), 280,199$, 198 (base peak), 158, 114 and 91.
Compound 28, colourless crystals, $\mathrm{mp} 66^{\circ} \mathrm{C}$ [from hexane$\mathrm{Et}_{2} \mathrm{O}$ (5:1)] (Found: C, 57.7; H, 6.9; N, 4.5. $\mathrm{C}_{15} \mathrm{H}_{21} \mathrm{NO}_{4} \mathrm{~S}$ requires $\mathrm{C}, 57.9 ; \mathrm{H}, 6.8 ; \mathrm{N}, 4.5 \%$); $[\alpha]_{\mathrm{D}}^{20}-22.2$ ($c 1.24$ in $\left.\mathrm{CHCl}_{3}\right) ; \Delta \varepsilon+2.15\left(221.1 \mathrm{~nm}\right.$ in isooctane); $v_{\text {max }} / \mathrm{cm}^{-1} 3390$ (NH), $1728(\mathrm{CO})$ and $1600(\mathrm{C}=\mathrm{C}) ; \delta_{\mathrm{H}}\left(300 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 1.11$ (3 H, d, J7.1, CMe), 1.17 ($3 \mathrm{H}, \mathrm{d}, J 6.8$, CMe), 2.42 ($3 \mathrm{H}, \mathrm{s}, \mathrm{CMe}$), $2.98(1 \mathrm{H}, \mathrm{m}, 2-\mathrm{H}), 3.66(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 3.90(1 \mathrm{H}, \mathrm{m}, 5-\mathrm{H}), 4.58$ ($1 \mathrm{H}, \mathrm{d}, J 7.6, \mathrm{NH}$), 5.33 (1 H , ddd, $J 15.6,6.0$ and $1.1, \mathrm{CH}=$), $5.55(1 \mathrm{H}, \mathrm{ddd}, J 15.6,7.4$ and $1.3, \mathrm{CH}=), 7.26-7.30(2 \mathrm{H}, \mathrm{m}, \mathrm{Ph})$ and 7.72-7.76 ($2 \mathrm{H}, \mathrm{m}, \mathrm{Ph}$).

Methyl (2S,5S,3E)-2-methyl-5-[(4-methylphenyl)sulfonylamino] hex-3-enoate 28 and methyl ($4 R, 5 S, 2 E$)-4-methyl-5-[(4-methylphenyl)sulfonylamino] hex-2-enoate 29
By a procedure identical with that described for the reaction of 12 with $\mathrm{MeCu}(\mathrm{CN}) \mathrm{Li} \cdot \mathrm{LiBr}$, the enoate $15(148 \mathrm{mg}, 0.5 \mathrm{mmol})$ was converted into a mixture of the enoates 28 and 29 by treatment with $\mathrm{MeCu}(\mathrm{CN}) \mathrm{Li} \cdot \mathrm{LiBr}(2 \mathrm{mmol})$ in $\mathrm{THF}-\mathrm{Et}_{2} \mathrm{O}$ (5:1) at $-78^{\circ} \mathrm{C}$ for 30 min . The mixture of products was separated by flash chromatography over silica gel eluting with hexane-EtOAc (4:1), to give, in order of elution, the $\mathrm{S}_{\mathrm{N}} 2$ product $29(5 \mathrm{mg}, 3 \%)$ and the anti- $\mathrm{S}_{\mathrm{N}} 2^{\prime}$-product $28(143 \mathrm{mg}$, 92%).
Compound 28, colourless crystals, $\mathrm{mp} 64^{\circ} \mathrm{C}$ [from hexane$\mathrm{Et}_{2} \mathrm{O}$ (5:1)] (Found: C, 57.6; H, 6.7; N, 4.4. $\mathrm{C}_{15} \mathrm{H}_{21} \mathrm{NO}_{4} \mathrm{~S}$ requires $\mathrm{C}, 57.9 ; \mathrm{H}, 6.8 ; \mathrm{N}, 4.5 \%$); $[\alpha]_{\mathrm{D}}^{20}-18.9$ (c 0.53 in CHCl_{3}) ; $\delta_{\mathrm{H}}\left(200 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right.$) 1.11 ($3 \mathrm{H}, \mathrm{d}, J 7.1, \mathrm{CMe}$), 1.17 (3 $\mathrm{H}, \mathrm{d}, J 6.8, \mathrm{CMe}), 2.42$ ($3 \mathrm{H}, \mathrm{s}, \mathrm{CMe}$), 2.98 ($1 \mathrm{H}, \mathrm{m}, 2-\mathrm{H}$), 3.66 (3 $\mathrm{H}, \mathrm{s}, \mathrm{OMe}), 3.92(1 \mathrm{H}, \mathrm{m}, 5-\mathrm{H}), 4.62(1 \mathrm{H}, \mathrm{m}, \mathrm{NH}), 5.33(1 \mathrm{H}$, ddd, $J 15.6,6.0$ and $1.1, \mathrm{CH}=)$, $5.55(1 \mathrm{H}$, ddd, $J 15.6,7.4$ and $1.3, \mathrm{CH}=), 7.26-7.30(2 \mathrm{H}, \mathrm{m}, \mathrm{Ph})$ and $7.72-7.76(2 \mathrm{H}, \mathrm{m}, \mathrm{Ph})$.
Compound 29, colourless crystals, mp $79^{\circ} \mathrm{C}$ [from hexane$\left.\mathrm{Et}_{2} \mathrm{O}(1: 3)\right] ;[\alpha]_{\mathrm{D}}^{20}-10.5\left(c 0.90\right.$ in $\left.\mathrm{CHCl}_{3}\right) ; \delta_{\mathrm{H}}(300 \mathrm{MHz}$; CDCl_{3}) 0.97 ($3 \mathrm{H}, \mathrm{d}, J 6.8, \mathrm{CMe}$), 1.01 ($3 \mathrm{H}, \mathrm{d}, J 6.8, \mathrm{CMe}$), 2.42 ($1 \mathrm{H}, \mathrm{m}, 4-\mathrm{H}$), 2.43 ($3 \mathrm{H}, \mathrm{s}, \mathrm{CMe}$), 3.36 ($1 \mathrm{H}, \mathrm{m}, 5-\mathrm{H}$), 3.72 (3 H , $\mathrm{s}, \mathrm{OMe}), 4.41(1 \mathrm{H}, \mathrm{m}, \mathrm{NH}), 5.80(1 \mathrm{H}, \mathrm{dd}, J 15.7$ and $1.1, \mathrm{CH}=)$, $6.75(1 \mathrm{H}, \mathrm{dd}, J 15.7$ and $7.7, \mathrm{CH}=), 7.29-7.31(2 \mathrm{H}, \mathrm{m}, \mathrm{Ph})$ and 7.72-7.76 ($2 \mathrm{H}, \mathrm{m}, \mathrm{Ph})$. The ${ }^{1} \mathrm{H}$ NMR spectrum in CDCl_{3} is identical with that of an authentic sample of $\mathbf{2 9}$ prepared from the amino alcohol 36 .

(2R,5S,3E)-2-Methyl-5-[N-benzyl- N-(4-methylphenyl)-sulfonylamino]hex-3-en-1-yl benzyl ether 30

To a stirred solution of the ester $25(218 \mathrm{mg}, 0.7 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $\left(4 \mathrm{~cm}^{3}\right)$ at $-78{ }^{\circ} \mathrm{C}$ was added diisobutylaluminium hydride $(0.98$ $\mathrm{mol} \mathrm{dm}{ }^{-3}$ solution in hexane; $3 \mathrm{~cm}^{3}, 2.8 \mathrm{mmol}, 4$ equiv.), and the mixture was stirred for 18 h during which time it was allowed to warm to room temperature. The excess of reagent was decomposed with aqueous saturated $\mathrm{Na}_{2} \mathrm{SO}_{4}\left(5 \mathrm{~cm}^{3}\right)$ at $0^{\circ} \mathrm{C}$. The inorganic salts were removed by filtration through Celite. The usual workup of the filtrate led to a colourless oil, which was purified by flash chromatography over silica gel eluting with hexane-EtOAc (3:1) to yield an alcohol ($93 \mathrm{mg}, 47 \%$) as a colourless oil. To a stirred suspension of $\mathrm{NaH}(31.8 \mathrm{mg}, 1.31$ mmol) in dry DMF ($2 \mathrm{~cm}^{3}$) was added a solution of the above alcohol (93 mg) in dry DMF $\left(2 \mathrm{~cm}^{3}\right)$ at $0{ }^{\circ} \mathrm{C}$, followed by benzyl bromide $\left(0.1 \mathrm{~cm}^{3}\right)$ and the mixture was stirred for 18 h at room temperature when it was poured into ice-water and extracted
with $\mathrm{Et}_{2} \mathrm{O}$. The extract was washed with water and dried (MgSO_{4}). Concentration under reduced pressure followed by flash chromatography over silica gel eluting with hexane-EtOAc ($8: 1$) gave the benzyl ether $30(137 \mathrm{mg}, 90 \%$) as a colourless syrup [Found (CI): $(\mathrm{M}+\mathrm{H})^{+}$, 464.2264. $\mathrm{C}_{28} \mathrm{H}_{34} \mathrm{NO}_{3} \mathrm{~S}$ requires $M+\mathrm{H}, 464.2259] ;[\alpha]_{\mathrm{D}}^{20}-29.1\left(c 0.53\right.$ in $\left.\mathrm{CHCl}_{3}\right)$; $\delta_{\mathrm{H}}\left(270 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 0.83(3 \mathrm{H}, \mathrm{d}, J 7.0, \mathrm{CMe}), 1.04(3 \mathrm{H}, \mathrm{d}, J$ 7.0, CMe), $2.30(1 \mathrm{H}, \mathrm{m}, 2-\mathrm{H}), 2.41(3 \mathrm{H}, \mathrm{s}, \mathrm{CMe}), 3.14(1 \mathrm{H}, \mathrm{dd}$, $J 8.9$ and $6.5,1-\mathrm{H}), 3.18(1 \mathrm{H}$, dd, $J 8.9$ and $6.9,1-\mathrm{H}), 4.24(1 \mathrm{H}$, $\mathrm{d}, J 16.2, \mathrm{NCHH}), 4.40(1 \mathrm{H}, \mathrm{d}, J 16.2, \mathrm{NCH} H), 4.44(2 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{OCH}_{2}\right), 4.52(1 \mathrm{H}, \mathrm{m}, 5-\mathrm{H}), 5.17(1 \mathrm{H}$, ddd, $J 15.7,5.1$ and 0.5 , $\mathrm{CH}=), 5.31(1 \mathrm{H}$, ddd, $J 15.7,6.9$ and $0.9, \mathrm{CH}=), 7.18-7.37(12$ $\mathrm{H}, \mathrm{m}, \mathrm{Ph})$ and 7.67-7.70 (2 H, m, Ph); $m / z(\mathrm{CI}) 464\left(\mathrm{MH}^{+}\right)$, 352, 288, 262, 203 (base peak), 95 and 91.
(2S)-2-\{ N-Benzyl- N-[(4-methylphenyl)sulfonyl] amino $\}$ propan-1-ol 31 and ($2 R$)-3-hydroxy-2-methylpropyl benzyl ether 32 Ozone was bubbled through a solution of the benzyl ether 30 $(127 \mathrm{mg}, 0.274 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(15 \mathrm{~cm}^{3}\right)$ at $-78^{\circ} \mathrm{C}$ until a blue colour persisted. The solution was stirred for 30 min during which time it was allowed to warm to $0^{\circ} \mathrm{C}$. It was then recooled to $-78^{\circ} \mathrm{C}$ and diisobutylaluminium hydride $\left(0.93 \mathrm{~mol} \mathrm{dm}{ }^{-3}\right.$ solution in hexane; $7 \mathrm{~cm}^{3}, 6.5 \mathrm{mmol}, 23.7$ equiv.) was added dropwise to the mixture, which was then stirred for 2 h at $-20^{\circ} \mathrm{C}$. Saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}\left(2 \mathrm{~cm}^{3}\right)$ was added with vigorous stirring at $-78^{\circ} \mathrm{C}$ and the mixture was allowed to warm to $0^{\circ} \mathrm{C}$. The mixture was made acidic with $5 \% \mathrm{HCl}$ at $0^{\circ} \mathrm{C}$ and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The extract was dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated under reduced pressure to leave a colourless oil, which was purified by flash chromatography over silica gel eluting with hexane-EtOAc $(3: 1)$ to give the benzyl ether 32 ($28 \mathrm{mg}, 57 \%$). Continued elution gave the protected amino alcohol 31 ($75.5 \mathrm{mg}, 86 \%$).

Compound 31, colourless crystals, mp $117^{\circ} \mathrm{C}$ [from hexane$\mathrm{Et}_{2} \mathrm{O}$ (1:1)] (Found: C, 63.9; H, 6.7; N, 4.2. $\mathrm{C}_{17} \mathrm{H}_{21} \mathrm{NO}_{3} \mathrm{~S}$ requires $\mathrm{C}, 63.9 ; \mathrm{H}, 6.6 ; \mathrm{N}, 4.4 \%$) ; $[\alpha]_{\mathrm{D}}^{20}+32.0(c 1.246$ in $\left.\mathrm{CHCl}_{3}\right) ; \delta_{\mathrm{H}}\left(270 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 0.91(3 \mathrm{H}, \mathrm{d}, J 7.3, \mathrm{CMe}), 1.67(1$ $\mathrm{H}, \mathrm{dd}, J 6.2$ and $6.2, \mathrm{OH}), 2.44(3 \mathrm{H}, \mathrm{s}, \mathrm{CMe}), 3.26(1 \mathrm{H}, \mathrm{d}, J 7.0$, $1-\mathrm{H}), 3.28(1 \mathrm{H}, \mathrm{d}, J 6.2,1-\mathrm{H}), 4.02(1 \mathrm{H}$, ddd, $J 14.0,14.0$ and $7.0,2-\mathrm{H}), 4.16(1 \mathrm{H}, \mathrm{d}, J 15.8, \mathrm{NCHH}), 4.67(1 \mathrm{H}, \mathrm{d}, J 15.8$, $\mathrm{NCH} H), 7.24-7.44(7 \mathrm{H}, \mathrm{m}, \mathrm{Ph})$ and $7.72-7.75(2 \mathrm{H}, \mathrm{m}, \mathrm{Ph})$.

Compound 32, colourless oil; bp $110^{\circ} \mathrm{C}$ (Kugelrohr distillation; 2 mmHg) [Found (FAB): $(\mathrm{M}+\mathrm{H})^{+}, 181.1231$. $\mathrm{C}_{11} \mathrm{H}_{1}, \mathrm{O}_{2}$ requires $\left.M+\mathrm{H}, 181.1228\right] ;[\alpha]_{\mathrm{D}}^{20}+17.6(c 0.85$ in $\left.\mathrm{CHCl}_{3}\right) ; \delta_{\mathrm{H}}\left(270 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 0.89(3 \mathrm{H}, \mathrm{d}, J 6.9, \mathrm{CMe}), 2.08(1$ $\mathrm{H}, \mathrm{m}, 2-\mathrm{H}), 2.50(1 \mathrm{H}, \mathrm{dd}, J 6.3$ and $4.9, \mathrm{OH}), 3.43(1 \mathrm{H}, \mathrm{dd}, J 8.5$ and $8.5,1-\mathrm{H}), 3.49-3.68(3 \mathrm{H}, \mathrm{m}, 1-\mathrm{H}$ and $3-\mathrm{H} \times 2), 4.52(2 \mathrm{H}$, $\left.\mathrm{s}, \mathrm{OCH}_{2}\right)$ and $7.26-7.38(5 \mathrm{H}, \mathrm{m}, \mathrm{Ph}) ; m / z(\mathrm{FAB}) 181\left(\mathrm{MH}^{+}\right)$, $149,107,91$ (base peak), 69, 57, 55, 43 and 41.
(2S,5S,3E)-2-Methyl-5-\{ N-benzyl- N-[(4-methylphenyl)sulfonylamino] hex-3-enyl benzyl ether 33
By a procedure identical with that described for the preparation of $\mathbf{3 0}$, the enoate $28(311 \mathrm{mg}, 1 \mathrm{mmol})$ was converted into the benzyl ether 33 ($162 \mathrm{mg}, 63 \%$) as a colourless oil [Found (CI): $\mathrm{MH}^{+}, 464.2254 . \mathrm{C}_{28} \mathrm{H}_{34} \mathrm{NO}_{3} \mathrm{~S}$ requires $\mathrm{MH}, 464.2259$]; $[\alpha]_{\mathrm{D}}^{20}$ $-36.9\left(c 0.36\right.$ in $\left.\mathrm{CHCl}_{3}\right) ; \delta_{\mathrm{H}}\left(270 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 0.83(3 \mathrm{H}, \mathrm{d}$, $J 6.5, \mathrm{CMe}), 1.04(3 \mathrm{H}, \mathrm{d}, J 7.0, \mathrm{CMe}), 2.30(1 \mathrm{H}, \mathrm{m}, 2-\mathrm{H}), 2.41$ ($3 \mathrm{H}, \mathrm{s}, \mathrm{CMe}$), $3.14(2 \mathrm{H}, \mathrm{d}, J 6.5,1-\mathrm{H}), 4.25(1 \mathrm{H}, \mathrm{d}, J 15.8$, $\mathrm{NCHH}), 4.39(1 \mathrm{H}, \mathrm{d}, J 15.8, \mathrm{NCH} H), 4.44\left(2 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{2}\right), 4.52$ $(1 \mathrm{H}, \mathrm{m}, 5-\mathrm{H}), 5.17(1 \mathrm{H}, \mathrm{dd}, J 15.8$ and $5.4, \mathrm{CH}=), 5.30(1 \mathrm{H}, \mathrm{dd}$, $J 15.8$ and $6.5, \mathrm{CH}=), 7.18-7.37(12 \mathrm{H}, \mathrm{m}, \mathrm{Ph})$ and $7.67-7.70(2$ $\mathrm{H}, \mathrm{m}, \mathrm{Ph}$) $: m / z(\mathrm{CI}) 464\left(\mathrm{MH}^{+}\right.$), 352, 288, 262, 203 (base peak), 95 and 91 .

(2S)-2-\{ N-Benzyl- N-[(4-methylphenyl)sulfonylamino]\}propan-

 1-ol 31 and (2S)-3-hydroxy-2-methylpropyl benzyl ether 34 By a procedure identical with that described for the preparationof 31 and 32, the benzyl ether $33(152 \mathrm{mg}, 0.328 \mathrm{mmol})$ was converted into the protected amino alcohol $31(90.3 \mathrm{mg}, 86 \%$) and the benzyl ether $34(36.0 \mathrm{mg}, 61 \%)$. The ${ }^{1} \mathrm{H}$ NMR spectrum of the protected amino alcohol 31 was identical with that of an authentic sample prepared from 30 .

Compound 34, colourless oil; bp $110^{\circ} \mathrm{C}$ (Kugelrohr distillation; 2 mmHg) [Found (FAB): $(\mathrm{M}+\mathrm{H})^{+}$181.1223. $\mathrm{C}_{11} \mathrm{H}_{17} \mathrm{O}_{2}$ requires $\left.M+\mathrm{H}, 181.1228\right] ;[\alpha]_{\mathrm{D}}^{20}-17.1(c 0.577$ in $\left.\mathrm{CHCl}_{3}\right) ; \delta_{\mathrm{H}}\left(270 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 0.89(3 \mathrm{H}, \mathrm{d}, J 6.9, \mathrm{CMe}), 2.08(1$ $\mathrm{H}, \mathrm{m}, 2-\mathrm{H}), 2.54(1 \mathrm{H}, \mathrm{m}, \mathrm{OH}), 3.43(1 \mathrm{H}, \mathrm{dd}, J 8.5$ and $8.5,1-$ H), $3.49-3.68(3 \mathrm{H}, \mathrm{m}, 1-\mathrm{H}$ and $3-\mathrm{H} \times 2), 4.52\left(2 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{2}\right)$ and $7.26-7.38(5 \mathrm{H}, \mathrm{m}, \mathrm{Ph}) ; m / z(\mathrm{FAB}) 181\left(\mathrm{MH}^{+}\right), 107,91$ (base peak), 69, 57, 55, 43 and 41 .

Methyl (4S,5S,2E)-4-methyl-5-[(4-methylphenyl)sulfonyl-amino]hex-2-enoate 24 and methyl ($4 S, 5 S, 2 Z$)-4-methyl-5-[(4-methylphenyl)sulfonylamino]hex-2-enoate 27
To a stirred solution of DMSO ($0.3 \mathrm{~cm}^{3}, 4.31 \mathrm{mmol}, 3.7$ equiv.) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(3 \mathrm{~cm}^{3}\right)$ at $-78^{\circ} \mathrm{C}$ under argon was added dropwise a solution of oxalyl chloride ($0.17 \mathrm{~cm}^{3}, 1.98 \mathrm{mmol}, 1.7$ equiv.) in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(3 \mathrm{~cm}^{3}\right)$. After 20 min , a solution of the alcohol 35 ($300 \mathrm{mg}, 1.17 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(1.5 \mathrm{~cm}^{3}\right.$) was added to the above reagent at $-78^{\circ} \mathrm{C}$, and the mixture was stirred for 20 $\min . \mathrm{Et}_{3} \mathrm{~N}\left(1.26 \mathrm{~cm}^{3}, 9.01 \mathrm{mmol}\right)$ was added dropwise to the above solution at $-78^{\circ} \mathrm{C}$, and the mixture was allowed to warm to $0^{\circ} \mathrm{C}$ and then recooled to $-78^{\circ} \mathrm{C}$. Aqueous saturated $\mathrm{NH}_{4} \mathrm{Cl}\left(4 \mathrm{~cm}^{3}\right)$ was added to the mixture and the mixture was extracted with $\mathrm{Et}_{2} \mathrm{O}$. The extract was washed successively with water, 10% aqueous citric acid and water, and dried $\left(\mathrm{MgSO}_{4}\right)$. Concentration under reduced pressure gave a crude aldehyde as a colourless oil. To a stirred solution of the above oily aldehyde in $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(5 \mathrm{~cm}^{3}\right)$ was added (methoxycarbonylmethylene)triphenylphosphorane ($780 \mathrm{mg}, 2.33 \mathrm{mmol}, 2$ equiv.) at $0^{\circ} \mathrm{C}$, and the mixture was stirred for 1 h at room temperature. The mixture was concentrated under reduced pressure to an oil which was flash chromatographed on silica gel eluting with hexane-EtOAc (3:1) to give the cis-enoate $27(16.5 \mathrm{mg}, 4.5 \%)$. Continued elution gave the trans-enoate 24 ($208 \mathrm{mg}, 67 \%$).

Compound 24, colourless crystals, mp $99^{\circ} \mathrm{C}$ [from hexane$\mathrm{Et}_{2} \mathrm{O}$ (1:5)] (Found: C, 57.7; H, 6.7; N, 4.5. $\mathrm{C}_{15} \mathrm{H}_{21} \mathrm{NO}_{4} \mathrm{~S}$ requires $\mathrm{C}, 57.9 ; \mathrm{H}, 6.8 ; \mathrm{N}, 4.5 \%) ; \delta_{\mathrm{H}}\left(300 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 0.96(3$ $\mathrm{H}, \mathrm{d}, J 6.8, \mathrm{CMe}), 1.01(3 \mathrm{H}, \mathrm{d}, J 6.9, \mathrm{CMe}), 2.42(1 \mathrm{H}, \mathrm{m}, 4-\mathrm{H})$, $2.43(3 \mathrm{H}, \mathrm{s}, \mathrm{CMe}), 3.35(1 \mathrm{H}, \mathrm{m}, 5-\mathrm{H}), 3.72(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 4.35$ $(1 \mathrm{H}, \mathrm{d}, J 8.8, \mathrm{NH}), 5.77(1 \mathrm{H}, \mathrm{dd}, J 15.7$ and $1.1,2-\mathrm{H}), 6.76(1$ $\mathrm{H}, \mathrm{dd}, J 15.7$ and $8.3,3-\mathrm{H}), 7.28-7.31(2 \mathrm{H}, \mathrm{m}, \mathrm{Ph})$ and $7.73-$ 7.77 ($2 \mathrm{H}, \mathrm{m}, \mathrm{Ph}$).

Compound 27, colourless crystals, $\mathrm{mp} 91^{\circ} \mathrm{C}$ [from hexane$\left.\mathrm{Et}_{2} \mathrm{O}(4: 1)\right]$ [Found (EI): $\mathrm{M}^{+}, 311.1180 . \mathrm{C}_{15} \mathrm{H}_{21} \mathrm{NO}_{4} \mathrm{~S}$ requires $M, 311.1190] ;[\alpha]_{\mathrm{D}}^{20}+6.0\left(c 0.60\right.$ in $\left.\mathrm{CHCl}_{3}\right) ; v_{\text {max }} / \mathrm{cm}^{-1} 3400$, $3220(\mathrm{NH}), 1713(\mathrm{CO}), 1645$ and $1602(\mathrm{C}=\mathrm{C}) ; \delta_{\mathrm{H}}(200 \mathrm{MHz}$; $\left.\mathrm{CDCl}_{3}\right) 0.95(3 \mathrm{H}, \mathrm{d}, J 6.8, \mathrm{CMe}), 1.01(3 \mathrm{H}, \mathrm{d}, J 6.6, \mathrm{CMe}), 2.43$ ($3 \mathrm{H}, \mathrm{s}, \mathrm{CMe}$), $3.27(1 \mathrm{H}, \mathrm{m}, 5-\mathrm{H}), 3.41(1 \mathrm{H}, \mathrm{m}, 4-\mathrm{H}), 3.72(3 \mathrm{H}$, s, OMe), $5.04(1 \mathrm{H}, \mathrm{d}, J 7.8, \mathrm{NH}), 5.79(1 \mathrm{H}, \mathrm{d}, J 11.7,2-\mathrm{H}), 6.01$ $(1 \mathrm{H}, \mathrm{dd}, J 11.7$ and $10.0,3-\mathrm{H}), 7.28-7.32(2 \mathrm{H}, \mathrm{m}, \mathrm{Ph})$ and $7.76-$ 7.80 ($2 \mathrm{H}, \mathrm{m}, \mathrm{Ph}$); m / z (EI) $311\left(\mathrm{M}^{+}\right.$), 280, 199, 198 (base peak), 158,114 and 91.

Methyl (4R,5S,2Z)-4-methyl-5-[(4-methylphenyl)sulfonylamino] hex-2-enoate 26 and methyl ($4 R, 5 S, 2 E$)-4-methyl-5-[(4-methylphenyl)sulfonylamino]hex-2-enoate 29
By a procedure identical with that described for the preparation of 24 and 27 , the alcohol $36(120 \mathrm{mg}, 0.466 \mathrm{mmol})$ was converted into a $17: 1$ mixture of 29 and 26 . The mixture was separated by flash chromatography over silica gel, eluting with hexane-EtOAc (3:1) to give the cis-enoate 26 ($6.1 \mathrm{mg}, 4.2 \%$), and further elution gave the trans-enoate 29 ($105 \mathrm{mg}, 72 \%$).

Compound 26, colourless oil [Found (EI): $\mathrm{M}^{+}, 311.1204$. $\mathrm{C}_{15} \mathrm{H}_{21} \mathrm{NO}_{4} \mathrm{~S}$ requires $\left.M, 311.1191\right] ;[x]_{\mathrm{D}}^{20}-101$ (c 0.37 in
$\left.\mathrm{CHCl}_{3}\right) ; v_{\text {max }}\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 3370(\mathrm{NH}), 1709$ (CO), 1645 and $1603(\mathrm{C}=\mathrm{C}) ; \delta_{\mathrm{H}}\left(300 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 0.96(3 \mathrm{H}, \mathrm{d}, J 6.6, \mathrm{CMe})$, $1.08(3 \mathrm{H}, \mathrm{d}, J 6.5, \mathrm{CMe}), 2.42(3 \mathrm{H}, \mathrm{s}, \mathrm{CMe}), 3.18(1 \mathrm{H}, \mathrm{m}, 5-\mathrm{H})$, 3.32 ($1 \mathrm{H}, \mathrm{m}, 4-\mathrm{H}$), 3.72 ($3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}$), 5.07 ($1 \mathrm{H}, \mathrm{d}, J 7.8, \mathrm{NH}$), $5.67(1 \mathrm{H}, \mathrm{d}, J 11.5, \mathrm{CH}=)$, $5.73(1 \mathrm{H}, \mathrm{dd}, J 11.5$ and $9.3, \mathrm{CH}=)$, 7.27-7.32 ($2 \mathrm{H}, \mathrm{m}, \mathrm{Ph}$) and 7.68-7.78 ($2 \mathrm{H}, \mathrm{m}, \mathrm{Ph}$); m/z (EI), 311 (M^{+}), 296, 280, 198 (base peak), 155 and 91.

Compound 29, colourless crystals, mp $78^{\circ} \mathrm{C}$ [from hexane$\mathrm{Et}_{2} \mathrm{O}$ (1:3)] (Found: C, 57.7; H, 6.7; N, 4.5. $\mathrm{C}_{15} \mathrm{H}_{21} \mathrm{NO}_{4} \mathrm{~S}$ requires $\mathrm{C}, 57.9 ; \mathrm{H}, 6.8 ; \mathrm{N}, 4.5 \%$); $[\alpha]_{\mathrm{D}}^{20}-9.9$ (c 0.89 in CHCl_{3}); $v_{\text {max }} / \mathrm{cm}^{-1} 3380(\mathrm{NH}), 1715(\mathrm{CO}), 1657$ and 1601 $(\mathrm{C}=\mathrm{C}) ; \delta_{\mathrm{H}}\left(300 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 0.97(3 \mathrm{H}, \mathrm{d}, J 6.8, \mathrm{CMe}), 1.01$ (3 H, d, J6.8, CMe), 2.42 ($1 \mathrm{H}, \mathrm{m}, 4-\mathrm{H}$), 2.43 ($3 \mathrm{H}, \mathrm{s}, \mathrm{CMe}$), 3.36 (1 $\mathrm{H}, \mathrm{m}, 5-\mathrm{H}), 3.72(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 4.41(1 \mathrm{H}, \mathrm{m}, \mathrm{NH}), 5.80(1 \mathrm{H}$, dd, $J 15.7$ and $1.1, \mathrm{CH}=), 6.75(1 \mathrm{H}, \mathrm{dd}, J 15.7$ and $7.7, \mathrm{CH}=$), 7.29-7.31 ($2 \mathrm{H}, \mathrm{m}, \mathrm{Ph}$) and 7.72-7.76 ($2 \mathrm{H}, \mathrm{m}, \mathrm{Ph}$).

Methyl (2R,3E)-2-butyl-5-[(4-methylphenyl)sulfonylamino]-pent-3-enoate 37 and methyl ($4 R, 2 Z$)-4-butyl-5-[(4-methylphenyl) sulfonylamino]pent-2-enoate 38
To a stirred slurry of CuCN ($179.1 \mathrm{mg}, 2 \mathrm{mmol}, 4$ equiv.) in dry THF ($2 \mathrm{~cm}^{3}$) under argon at $-78^{\circ} \mathrm{C}$ was added via syringe butyllithium ($1.63 \mathrm{~mol} \mathrm{dm}^{-3}$ solution in hexane; $1.23 \mathrm{~cm}^{3}, 2$ mmol, 4 equiv.), and the mixture was allowed to warm to $0^{\circ} \mathrm{C}$. After being stirred at this temperature for 10 min a solution of the α, β-enoate 10 ($140.7 \mathrm{mg}, 0.5 \mathrm{mmol}, 1$ equiv.) in dry THF (2 cm^{3}) was added dropwise to it at $-78^{\circ} \mathrm{C}$ with stirring, and stirring was continued for 30 min , followed by quenching with aqueous saturated $\mathrm{NH}_{4} \mathrm{Cl}-28 \% \mathrm{NH}_{4} \mathrm{OH}\left(1: 1 ; 4 \mathrm{~cm}^{3}\right)$. Usual workup led to a mixture of products as a colourless oil, which was separated by flash chromatography over silica gel eluting with hexane-EtOAc ($2: 1$), yielding, in order of elution, 38 (11 $\mathrm{mg}, 6.5 \%$) and 37 ($158 \mathrm{mg}, 93 \%$).

Compound 37, colourless oil; $[\alpha]_{\mathrm{D}}^{2 \mathrm{O}}-30.7\left(c 1.40\right.$ in $\left.\mathrm{CHCl}_{3}\right)$; $\Delta \varepsilon-0.313$ (216.3 nm in isooctane); $\delta_{\mathrm{H}}\left(270 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 0.87$ ($3 \mathrm{H}, \mathrm{t}, J 6.9, \mathrm{CMe}$), $1.10-1.32\left(4 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \times 2\right.$), 1.35-1.49 (1 $\mathrm{H}, \mathrm{m}, \mathrm{CH}), 1.60-1.74(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}), 2.43(3 \mathrm{H}, \mathrm{s}, \mathrm{CMe}), 2.92$ (1 H , dd, $J 15.5$ and $7.6,2-\mathrm{H}), 3.55\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right), 3.65(3 \mathrm{H}, \mathrm{s}$, $\mathrm{OMe}), 4.46(1 \mathrm{H}, \mathrm{t}, J 5.8, \mathrm{NH}), 5.44(1 \mathrm{H}, \operatorname{ddd}, J 15.5,5.8$ and $5.8, \mathrm{CH}=), 5.58(1 \mathrm{H}, \mathrm{dd}, J 15.5$ and $8.4, \mathrm{CH}=), 7.30-7.33(2 \mathrm{H}$, $\mathrm{m}, \mathrm{Ph})$ and $7.72-7.77(2 \mathrm{H}, \mathrm{m}, \mathrm{Ph}) ; m / z(\mathrm{FAB}) 340\left(\mathrm{MH}^{+}\right), 338$, 280, 184, 169 (base peak), 155, 109 and 91 [Found (FAB): (M $+\mathrm{H})^{+}$, 340.1577. $\mathrm{C}_{17} \mathrm{H}_{26} \mathrm{NO}_{4} \mathrm{~S}$ requires $\left.M+\mathrm{H}, 340.1582\right]$.

Compound 38, colourless oil [Found (FAB): $(\mathrm{M}+\mathrm{H})^{+}$, 340.1587. $\mathrm{C}_{17} \mathrm{H}_{26} \mathrm{NO}_{4} \mathrm{~S}$ requires $M+\mathrm{H}, 340.1582$]; $[\alpha]_{\mathrm{D}}^{20}$ -40.2 (c 1.25 in CHCl_{3}); $\delta_{\mathrm{H}}\left(270 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 0.83(3 \mathrm{H}$, apparent m, CMe), 1.12-1.43 ($6 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \times 3$), $2.43(3 \mathrm{H}, \mathrm{s}$, CMe), 2.86 (1 H , ddd, $J 11.5,9.7$ and $6.5,5-\mathrm{H}$), 3.01 (1 H , ddd, J 11.5, 4.6 and $4.6,5-\mathrm{H}), 3.42(1 \mathrm{H}, \mathrm{m}, 4-\mathrm{H}), 3.72(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe})$, $5.05(1 \mathrm{H}, \mathrm{t}, J 5.9, \mathrm{NH}), 5.79-5.89(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}=\times 2), 7.28-7.31$ ($2 \mathrm{H}, \mathrm{m}, \mathrm{Ph}$) and 7.70-7.74 ($2 \mathrm{H}, \mathrm{m}, \mathrm{Ph}$); FAB-LRMS, $m / z 340$ $\left(\mathrm{MH}^{+}\right), 308$ (base peak), 184, 155 and 91

Methyl (2R,3E)-2-isopropyl-5-[(4-methylphenyl)sulfonylamino] pent-3-enoate 39 and methyl ($4 R, 2 Z$)-4-isopropyl-5-[(4-methylphenyl)sulfonylamino] pent-2-enoate 40

By a procedure identical with that described for the reaction of 10 with $\mathrm{BuCu}(\mathrm{CN}) \mathrm{Li}$, the enoate $\mathbf{1 0}(112.5 \mathrm{mg}, 0.4 \mathrm{mmol})$ was converted into a mixture of enoates 39 and 40 by treatment with $\mathrm{Pr}^{\mathrm{i}} \mathrm{Cu}(\mathrm{CN}) \mathrm{MgCl} \cdot 2 \mathrm{LiCl}$ ($1.6 \mathrm{mmol}, 4$ equiv.) in THF at $-78^{\circ} \mathrm{C}$ for 30 min . The mixture was separated by flash chromatography over silica gel eluting with hexane-EtOAc ($2: 1$), yielding, in order of elution 40 ($10.5 \mathrm{mg}, 8 \%$) and $39(117 \mathrm{mg}, 90 \%)$.

Compound 39, colourless crystals, mp $74^{\circ} \mathrm{C}$ [from hexane$\mathrm{Et}_{2} \mathrm{O}$ (1:3)] (Found: C, 58.9; H, 7.3; N, 4.2. $\mathrm{C}_{16} \mathrm{H}_{23} \mathrm{NO}_{4} \mathrm{~S}$ requires $\mathrm{C}, 59.1 ; \mathrm{H}, 7.1 ; \mathrm{N}, 4.3 \%$); $[\alpha]_{\mathrm{D}}^{20}-42.2$ (c 0.744 in $\left.\mathrm{CHCl}_{3}\right) ; \Delta \varepsilon-3.9\left(216.3 \mathrm{~nm}\right.$ in isooctane) ; $\delta_{\mathrm{H}}\left(300 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right)$ 0.81 ($3 \mathrm{H}, \mathrm{d}, J 6.8, \mathrm{CMe}$), $0.86(3 \mathrm{H}, \mathrm{d}, J 6.8, \mathrm{CMe}), 1.92(1 \mathrm{H}, \mathrm{m}$,

CH), 2.43 ($3 \mathrm{H}, \mathrm{s}, \mathrm{CMe}$), 2.66 ($1 \mathrm{H}, \mathrm{m}, 2-\mathrm{H}$), 3.58 ($2 \mathrm{H}, \mathrm{m}, 5-\mathrm{H}$), 3.65 ($3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}$), 4.40 ($1 \mathrm{H}, \mathrm{m}, \mathrm{NH}$), 5.45 (1 H , ddd, $J 15.4,6.1$ and $6.1, \mathrm{CH}=), 5.60(1 \mathrm{H}$, dddd, $J 15.4,9.2,1.2$ and $1.2, \mathrm{CH}=)$, 7.30-7.32 ($2 \mathrm{H}, \mathrm{m}, \mathrm{Ph}$) and 7.72-7.76 ($2 \mathrm{H}, \mathrm{m}, \mathrm{Ph}$).

Compound 40, colourless oil [Found (FAB): $(\mathrm{M}+\mathrm{H})^{+}$ 326.1433. $\mathrm{C}_{16} \mathrm{H}_{24} \mathrm{NO}_{4} \mathrm{~S}$ requires $\left.M+\mathrm{H}, 326.1426\right] ;[\alpha]_{\mathrm{D}}^{20}$ -51.1 (c 1.40 in CHCl_{3}); $\delta_{\mathrm{H}}\left(300 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 0.83(3 \mathrm{H}, \mathrm{d}, J$ 6.6, CMe), 0.85 ($3 \mathrm{H}, \mathrm{d}, J 6.6, \mathrm{CMe}$), 1.62 ($1 \mathrm{H}, \mathrm{m}, \mathrm{CH}$), 2.43 ($3 \mathrm{H}, \mathrm{s}, \mathrm{CMe}$), 2.89 (1 H, ddd, J 11.6, 10.3 and $6.5,5-\mathrm{H}$), 3.11 $(1 \mathrm{H}, \mathrm{ddd}, J 11.6,4.2$ and $4.2,5-\mathrm{H}), 3.24(1 \mathrm{H}, \mathrm{m}, 4-\mathrm{H}), 3.73$ ($3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}$), 5.03 ($1 \mathrm{H}, \mathrm{m}, \mathrm{NH}$), 5.84-5.96 ($2 \mathrm{H}, \mathrm{m}, \mathrm{CH}=\mathrm{CH}$), 7.26-7.31 ($2 \mathrm{H}, \mathrm{m}, \mathrm{Ph}$) and 7.69-7.74 ($2 \mathrm{H}, \mathrm{m}, \mathrm{Ph}$); m/z (FAB) $326\left(\mathrm{MH}^{+}\right), 294$ (base peak), 155, 149 and 91.

Methyl (2S,5S,3E)-2-ethyl-5-[(4-methylphenyl)sulfonylamino]-hex-3-enoate 41 and methyl ($4 S, 5 S, 2 Z$)-4-ethyl-5-[(4-methylphenyl)sulfonylamino] hex-2-enoate 42

By a procedure identical with that described for the reaction of 10 with $\mathrm{BuCu}(\mathrm{CN}) \mathrm{Li}$, the enoate $13(148 \mathrm{mg}, 0.5 \mathrm{mmol})$ was converted into a mixture of enoates 41 and 42 by treatment with $\mathrm{EtCu}(\mathrm{CN}) \mathrm{MgCl} \cdot 4 \mathrm{LiCl}\left(2 \mathrm{mmol}, 4\right.$ equiv.) in THF at $-78^{\circ} \mathrm{C}$ for 30 min . The mixture was separated by flash chromatography over silica gel eluting with hexane-EtOAc (3:1), yielding, in order of elution 42 ($12.5 \mathrm{mg}, 8 \%$) and $41(149 \mathrm{mg}, 92 \%)$.

Compound 41, colourless oil [Found (FAB): $(\mathrm{M}+\mathrm{H})^{+}$, 326.1424. $\mathrm{C}_{16} \mathrm{H}_{24} \mathrm{NO}_{4} \mathrm{~S}$ requires $\left.M+\mathrm{H}, 326.1426\right] ;[\alpha]_{\mathrm{D}}^{20}+$ 5.9 (c 0.597 in CHCl_{3}); $\delta_{\mathrm{H}}\left(270 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 0.79(3 \mathrm{H}, \mathrm{t}, J 7.3$, CMe), $1.17(3 \mathrm{H}, \mathrm{d}, J 6.5, \mathrm{CMe}), 1.39(1 \mathrm{H}, \mathrm{m}, \mathrm{C} H \mathrm{H}), 1.67(1 \mathrm{H}$, $\mathrm{m}, \mathrm{CH} H$), 2.42 ($3 \mathrm{H}, \mathrm{s}, \mathrm{CMe}$), 2.76 ($1 \mathrm{H}, \mathrm{dd}, J 15.8$ and $7.6,2-$ H), 3.66 ($3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}$), 3.91 ($1 \mathrm{H}, \mathrm{m}, 5-\mathrm{H}), 4.56(1 \mathrm{H}, \mathrm{d}, J 7.3$, $\mathrm{NH}), 5.34(1 \mathrm{H}$, dd, $J 15.8$ and $5.4, \mathrm{CH}=)$, $5.46(1 \mathrm{H}$, dd, $J 15.8$ and 8.6, $\mathrm{CH}=$), $7.27-7.30(2 \mathrm{H}, \mathrm{m}, \mathrm{Ph})$ and $7.72-7.75(2 \mathrm{H}, \mathrm{m}$, Ph); m / z (FAB) $326\left(\mathrm{MH}^{+}\right.$), 324, 310, 266, 155 (base peak) and 91.

Compound 42, colourless oil; [Found (FAB): $(\mathrm{M}+\mathrm{H})^{+}$, 326.1431. $\mathrm{C}_{16} \mathrm{H}_{24} \mathrm{NO}_{4} \mathrm{~S}$ requires $\left.M+\mathrm{H}, 326.1426\right]$; $[\alpha]_{\mathrm{D}}^{20}$ $-6.6\left(c 0.345 \mathrm{in} \mathrm{CHCl}_{3}\right) ; \delta_{\mathrm{H}}\left(270 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 0.72(3 \mathrm{H}, \mathrm{t}, J 7.6$, CMe), 1.04 (3 H, d, J6.6, CMe), 1.21 ($1 \mathrm{H}, \mathrm{m}, \mathrm{CHH}$), 1.49 (1 H , $\mathrm{m}, \mathrm{CH} H), 2.43(3 \mathrm{H}, \mathrm{s}, \mathrm{CMe}), 3.17(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}), 3.29(1 \mathrm{H}, \mathrm{m}$, CH), 3.73 ($3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}$), $5.29(1 \mathrm{H}, \mathrm{d}, J 6.6, \mathrm{NH}$), 5.91 (1 H , dd, $J 17.6$ and $11.6, \mathrm{CH}=)$, $5.93(1 \mathrm{H}, \mathrm{dd}, J 11.6$ and $11.6, \mathrm{CH}=)$, 7.28-7.32 ($2 \mathrm{H}, \mathrm{m}, \mathrm{Ph}$) and 7.77-7.81 ($2 \mathrm{H}, \mathrm{m}, \mathrm{Ph}$); m/z (FAB) $326\left(\mathrm{MH}^{+}\right.$, base peak), 294, 198, 155, 95, 69, 57 and 55.

Methyl (2S,5S,3E)-2-butyl-5-[(4-methylphenyl)sulfonylamino]-hex-3-enoate 43 and methyl ($4 S, 5 S, 2 Z$)-4-butyl-5-[(4-methylphenyl)sulfonylamino ${ }^{\text {l }}$ hex-2-enoate 44
To a stirred mixture of $\mathrm{ZnCl}_{2}\left(1.0 \mathrm{~mol} \mathrm{dm}^{-3}\right.$ solution in $\mathrm{Et}_{2} \mathrm{O} ; 2$ $\mathrm{cm}^{3}, 2 \mathrm{mmol}$) in dry THF ($10 \mathrm{~cm}^{3}$) was added via syringe butyllithium ($1.64 \mathrm{~mol} \mathrm{dm}{ }^{-3}$ solution in hexane; $3.66 \mathrm{~cm}^{3}, 6$ mmol) at $-78^{\circ} \mathrm{C}$, and the mixture was allowed to warm to $0^{\circ} \mathrm{C}$ and stirred at this temperature for 10 min . The mixture was recooled to $-78^{\circ} \mathrm{C}$, when $\mathrm{CuCN}(53.7 \mathrm{mg}, 0.6 \mathrm{mmol})$ was added with stirring, and the mixture was allowed to warm to $0^{\circ} \mathrm{C}$ and stirred at this temperature for 10 min . The α, β enoate 13 ($148 \mathrm{mg}, 0.5 \mathrm{mmol}$) in dry THF ($3 \mathrm{~cm}^{3}$) was added dropwise to the above reagent at $-78^{\circ} \mathrm{C}$ with stirring, and stirring was continued for 1 h , followed by quenching with aqueous saturated $\mathrm{NH}_{4} \mathrm{Cl}-28 \% \mathrm{NH}_{4} \mathrm{OH}\left(1: 1 ; 4 \mathrm{~cm}^{3}\right)$. Usual workup led to a mixture of products as a colourless oil, which was separated by flash chromatography over silica gel eluting with hexane-EtOAc ($4: 1$), to give, in order of elution, the title compounds 44 ($1.8 \mathrm{mg}, 1 \%$) and 43 ($170.5 \mathrm{mg}, 97 \%$).
Compound 43, colourless oil [Found (EI): $\mathrm{M}^{+}, 353.1668$. $\mathrm{C}_{18} \mathrm{H}_{27} \mathrm{NO}_{4} \mathrm{~S}$ requires $\left.M, 353.1661\right] ;[\alpha]_{\mathrm{D}}^{20}+1.48$ (c 1.08 in $\left.\mathrm{CHCl}_{3}\right) ; v_{\text {max }} / \mathrm{cm}^{-1} 3390(\mathrm{NH}), 1726(\mathrm{CO})$ and $1598(\mathrm{C}=\mathrm{C})$; $\delta_{\mathrm{H}}\left(270 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 0.86(3 \mathrm{H}, \mathrm{t}, J 6.6, \mathrm{CMe}), 1.05-1.65(6 \mathrm{H}$, $\mathrm{m}, \mathrm{CH}_{2} \times 3$), $1.17(3 \mathrm{H}, \mathrm{d}, J 6.8, \mathrm{CMe}), 2.42(3 \mathrm{H}, \mathrm{s}, \mathrm{CMe}), 2.83$
(1 H, m, 2-H), $3.66(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 3.91(1 \mathrm{H}, \mathrm{m}, 5-\mathrm{H}), 4.64(1 \mathrm{H}$, $\mathrm{d}, J 7.6, \mathrm{NH}), 5.32(1 \mathrm{H}$, dd, $J 15.6$ and $5.4, \mathrm{CH}=), 5.46(1 \mathrm{H}$, ddd, $J 15.6,8.0$ and $0.5, \mathrm{CH}=), 7.27-7.30(2 \mathrm{H}, \mathrm{m}, \mathrm{Ph})$ and 7.72$7.76(2 \mathrm{H}, \mathrm{m}, \mathrm{Ph}) ; m / z(\mathrm{EI}) 353\left(\mathrm{M}^{+}\right), 338,306,294,198$ (base peak), 155 and 91 .

Compound 44, colourless oil [Found (EI): $\mathrm{M}^{+}, 353.1664$. $\mathrm{C}_{18} \mathrm{H}_{27} \mathrm{NO}_{4} \mathrm{~S}$ requires $\left.M, 353.1661\right] ;[\alpha]_{\mathrm{D}}^{20}-27$ (cce.10 in $\left.\mathrm{CHCl}_{3}\right) ; v_{\max } / \mathrm{cm}^{-1} 3380,3220(\mathrm{NH}), 1707(\mathrm{CO})$ and 1598 $(\mathrm{C}=\mathrm{C}) ; \delta_{\mathrm{H}}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 0.79(3 \mathrm{H}, \mathrm{t}, J 6.9, \mathrm{CMe}), 1.00-1.40$ $\left(6 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \times 3\right), 1.06(3 \mathrm{H}, \mathrm{d}, J 6.6, \mathrm{CMe}), 2.42(3 \mathrm{H}, \mathrm{s}$, CMe), $3.27(2 \mathrm{H}, \mathrm{m}, 4-\mathrm{and} 5-\mathrm{H}), 3.74(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 5.26(1 \mathrm{H}$, d, $J 6.6, \mathrm{NH}), 5.89(1 \mathrm{H}, \mathrm{dd}, J 11.7$ and $4.8, \mathrm{CH}=), 5.93(1 \mathrm{H}, \mathrm{dd}$, $J 11.7$ and $4.9, \mathrm{CH}=), 7.28-7.31(2 \mathrm{H}, \mathrm{m}, \mathrm{Ph})$ and $7.77-7.81(2 \mathrm{H}$, $\mathrm{m}, \mathrm{Ph}) ; m /=$ (EI) $353\left(\mathrm{M}^{+}\right), 198$ (base peak), 155 and 91 .

Methyl (2S,5S,3E)-2-isopropyl-5-[(4-methylphenyl)sulfonylamino] hex-3-enoate 45 and methyl ($4 S, 5 S, 2 Z$)-4-isopropyl-5-[(4-methylphenyl)sulfonylamino]hex-2-enoate 46
By a procedure identical with that described for the reaction of 10 with $\operatorname{Pr}^{i} \mathrm{Cu}(\mathrm{CN}) \mathrm{MgCl} \cdot 2 \mathrm{LiCl}$, the enoate $13(148 \mathrm{mg}, 0.5$ mmol) was converted into a mixture of enoates 45 and 46 by treatment with $\operatorname{Pr}^{i} \mathrm{Cu}(\mathrm{CN}) \mathrm{MgCl} \cdot 2 \mathrm{LiCl}$ ($2 \mathrm{mmol}, 4$ equiv.) in THF at $-78^{\circ} \mathrm{C}$ for 30 min . The mixture was separated by flash chromatography over silica gel eluting with hexane EtOAc (2:1), to give, in order of elution $46(3.3 \mathrm{mg}, 2 \%)$ and $45(166$ $\mathrm{mg}, 97 \%$).

Compound 45, colourless oil (Found: C, 60.0; H, 7.3; N, 4.1. $\mathrm{C}_{17} \mathrm{H}_{25} \mathrm{NO}_{4} \mathrm{~S}$ requires: $\mathrm{C}, 60.2 ; \mathrm{H}, 7.4 ; \mathrm{N}, 4.1 \%$; $[\alpha]_{\mathrm{D}}^{20}+15.4$ (c 0.791 in CHCl_{3}); $v_{\text {max }} / \mathrm{cm}^{-1} 3380(\mathrm{NH}), 1728(\mathrm{CO})$ and 1600 $(\mathrm{C}=\mathrm{C}) ; \delta_{\mathrm{H}}\left(200 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 0.75(3 \mathrm{H}, \mathrm{d}, J 6.8, \mathrm{CMe}), 0.83(3$ $\mathrm{H}, \mathrm{d}, J 6.8, \mathrm{CMe}), 1.18(3 \mathrm{H}, \mathrm{d}, J 6.8, \mathrm{CMe}), 1.88(1 \mathrm{H}, \mathrm{m}, \mathrm{CH})$, $2.42(3 \mathrm{H}, \mathrm{s}, \mathrm{CMe}), 2.55(1 \mathrm{H}, \mathrm{t}, J 8.5,2-\mathrm{H}), 3.67(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe})$, $3.90(1 \mathrm{H}, \mathrm{m}, 5-\mathrm{H}), 4.69(1 \mathrm{H}, \mathrm{m}, \mathrm{NH}), 5.33(1 \mathrm{H}, \mathrm{dd}, J 15.6$ and $5.4, \mathrm{CH}=), 5.48(1 \mathrm{H}$, ddd, $J 15.6,9.3$ and $1.0, \mathrm{CH}=), 7.26-7.30$ ($2 \mathrm{H}, \mathrm{m}, \mathrm{Ph}$) and 7.71-7.77 ($2 \mathrm{H}, \mathrm{m}, \mathrm{Ph}$).

Compound 46, colourless crystals, mp $69^{\circ} \mathrm{C}$ [from hexane$\left.\mathrm{Et}_{2} \mathrm{O}(3: 1)\right]\left[\right.$ Found (EI): $\mathrm{M}^{+}, 339.1494 . \mathrm{C}_{17} \mathrm{H}_{25} \mathrm{NO}_{4} \mathrm{~S}$ requires $M, 339.1504]$; $[\alpha]_{\mathrm{D}}^{27}-24.6$ (c 0.26 in CHCl_{3}); $\delta_{\mathrm{H}}(270 \mathrm{MHz}$; $\left.\mathrm{CDCl}_{3}\right) 0.68(3 \mathrm{H}, \mathrm{d}, J 6.6, \mathrm{CMe}), 0.71(3 \mathrm{H}, \mathrm{d}, J 6.6, \mathrm{CMe})$, $1.06(3 \mathrm{H}, \mathrm{d}, J 6.6, \mathrm{CMe}), 1.61(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}), 2.43(3 \mathrm{H}, \mathrm{s}, \mathrm{CMe})$, 2.89 (1 H, m, 4-H), $3.43(1 \mathrm{H}, \mathrm{m}, 5-\mathrm{H}), 3.76(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 5.64$ $(1 \mathrm{H}, \mathrm{d}, J 5.9, \mathrm{NH}), 5.95(1 \mathrm{H}, \mathrm{dd}, J 11.7$ and $9.5, \mathrm{CH}=), 6.03(1$ $\mathrm{H}, \mathrm{dd}, J 11.7$ and $0.5, \mathrm{CH}=), 7.28-7.34(2 \mathrm{H}, \mathrm{m}, \mathrm{Ph})$ and 7.80 $7.85(2 \mathrm{H}, \mathrm{m}, \mathrm{Ph}) ; m / z(\mathrm{EI}) 339\left(\mathrm{M}^{+}\right), 308,198$ (base peak), 155, 142 and 91

Methyl (2S,5S,3E)-2-[(isopropoxy)dimethylsilylmethyl]-5-[(4-methylphenyl)sulfonylamino]hex-3-enoate 47

To a stirred solution of $\mathrm{CuCN}(358 \mathrm{mg}, 4 \mathrm{mmol})$ and $\mathrm{LiCl}(339$ $\mathrm{mg}, 8 \mathrm{mmol}$) in dry THF ($5 \mathrm{~cm}^{3}$) under argon was added via syringe $\mathrm{Pr}^{\mathrm{i}} \mathrm{OSi}(\mathrm{Me})_{2} \mathrm{CH}_{2} \mathrm{MgCl}\left(0.8 \mathrm{~mol} \mathrm{dm}{ }^{-3}\right.$ solution in THF; $5.0 \mathrm{~cm}^{3}, 4 \mathrm{mmol}$) at $-78^{\circ} \mathrm{C}$, and the mixture was allowed to warm to $0^{\circ} \mathrm{C}$ and stirred at this temperature for 10 min . A solution of the enoate $13(295 \mathrm{mg}, 1 \mathrm{mmol})$ in dry THF ($2 \mathrm{~cm}^{3}$) was added dropwise to the above reagent at $-78^{\circ} \mathrm{C}$ with stirring, and stirring was continued for 30 min , followed by quenching with aqueous saturated $\mathrm{NH}_{4} \mathrm{Cl}-28 \% \mathrm{NH}_{4} \mathrm{OH}\left(1: 1 ; 4 \mathrm{~cm}^{3}\right)$. The mixture was extracted with $\mathrm{Et}_{2} \mathrm{O}-\mathrm{CH}_{2} \mathrm{Cl}_{2}(4: 1)$ and the extract was washed with water and dried $\left(\mathrm{MgSO}_{4}\right)$. Concentration under reduced pressure gave an oily residue, which was flash chromatographed on silica gel, eluting with hexane-EtOAc(4:1) to give the title compound ($320 \mathrm{mg}, 75 \%$) (Found: C, $55.9 ; \mathrm{H}, 8.1$; $\mathrm{N}, 3.3 . \mathrm{C}_{20} \mathrm{H}_{33} \mathrm{NO}_{5} \mathrm{SSi}$ requires $\mathrm{C}, 56.2 ; \mathrm{H}, 7.8 ; \mathrm{N}, 3.3 \%$; $[\alpha]_{\mathrm{D}}^{20}$ $0\left(c 0.65\right.$ in $\left.\mathrm{CHCl}_{3}\right) ; \delta_{\mathrm{H}}\left(270 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 0.06\left(6 \mathrm{H}, \mathrm{s}, \mathrm{SiMe}_{2}\right)$, $0.73(1 \mathrm{H}, \mathrm{dd}, J 14.9$ and $7.3, \mathrm{C} H \mathrm{HSi}), 1.05(1 \mathrm{H}, \mathrm{dd}, J 14.9$ and 7.7, $\mathrm{CH} H \mathrm{Si}), 1.12(6 \mathrm{H}, \mathrm{d}, J 6.2$, CMe $\times 2$), $1.17(3 \mathrm{H}, \mathrm{d}, J 6.5$, CMe), 2.42 ($3 \mathrm{H}, \mathrm{s}, \mathrm{CMe}$), $3.04(1 \mathrm{H}$, dd, $J 15.7$ and $7.7, \mathrm{CH}$), $3.63(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 3.85-399(2 \mathrm{H}, \mathrm{m}, 5-\mathrm{H}$ and CH$), 4.50(1 \mathrm{H}$,
$\mathrm{d}, J 7.3, \mathrm{NH}), 5.35(1 \mathrm{H}$, ddd, $J 15.7,6.2$ and $0.5, \mathrm{CH}==5.51(1$ H , ddd, $J 15.7,8.1$ and $1.1, \mathrm{CH}=), 7.27-7.30(2 \mathrm{H}, \mathrm{m}, \mathrm{Ph})$ and $7.71-7.76$ ($2 \mathrm{H}, \mathrm{m}, \mathrm{Ph}$).

Methyl (2S,5S,3E)-2-(4-fiuorophenylmethyl)-5-[(4-methylphenyl)sulfonylamino] hex-3-enoate 48

To a stirred solution of $\mathrm{CuCN}(358 \mathrm{mg}, 4 \mathrm{mmol})$ and $\mathrm{LiCl}(339$ $\mathrm{mg}, 8 \mathrm{mmol}$) in dry THF ($5 \mathrm{~cm}^{3}$) under argon was added via syringe $p-\mathrm{FC}_{6} \mathrm{H}_{4} \mathrm{CH}_{2} \mathrm{MgCl}\left(0.75 \mathrm{~mol} \mathrm{dm}{ }^{-3}\right.$ solution in THF; $5.33 \mathrm{~cm}^{3}, 4 \mathrm{mmol}$) at $-78^{\circ} \mathrm{C}$, and the mixture was allowed to warm to $0^{\circ} \mathrm{C}$, and stirred at this temperature for 10 min . The enoate 13 ($295 \mathrm{mg}, 1 \mathrm{mmol}$) in dry THF $\left(2 \mathrm{~cm}^{3}\right)$ was added dropwise to the above reagent at $-78^{\circ} \mathrm{C}$ with stirring, and the stirring was continued for 30 min , followed by quenching with aqueous saturated $\mathrm{NH}_{4} \mathrm{Cl}-28 \% \mathrm{NH}_{4} \mathrm{OH}\left(1: 1 ; 4 \mathrm{~cm}^{3}\right)$. The mixture was extracted with $\mathrm{Et}_{2} \mathrm{O}-\mathrm{CH}_{2} \mathrm{Cl}_{2}(4: 1)$ and the extract was washed with water and dried $\left(\mathrm{MgSO}_{4}\right)$. Concentration under reduced pressure gave an oily residue, which was flash chromatographed on silica gel, eluting with hexane-EtOAc ($3: 1$) to give the title compound ($397 \mathrm{mg}, 98 \%$) as a colourless oil (Found: C, 62.3; H, 6.1; N, 3.4. $\mathrm{C}_{21} \mathrm{H}_{24} \mathrm{FNO}_{4} \mathrm{~S}$ requires C , $62.2 ; \mathrm{H}, 6.0 ; \mathrm{N}, 3.5 \%) ;[\alpha]_{\mathrm{D}}^{20}+3.17\left(c 0.82\right.$ in $\left.\mathrm{CHCl}_{3}\right) ; \delta_{\mathrm{H}}(270$ $\mathrm{MHz} ; \mathrm{CDCl}_{3}$) 1.09 ($3 \mathrm{H}, \mathrm{d}, J 7.0$, CMe), 2.42 ($3 \mathrm{H}, \mathrm{s}, \mathrm{CMe}$), 2.62 $(1 \mathrm{H}, \mathrm{dd}, J 13.5$ and $7.0, \mathrm{PhCHH}), 2.93(1 \mathrm{H}, \mathrm{dd}, J 13.5$ and 7.8 , $\mathrm{PhCH} H), 3.09(1 \mathrm{H}, \mathrm{dd}, J 15.7$ and $7.8,2-\mathrm{H}), 3.62(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe})$, $3.84(1 \mathrm{H}, \mathrm{m}, 5-\mathrm{H}), 4.38(1 \mathrm{H}, \mathrm{d}, J 7.8, \mathrm{NH}), 5.20(1 \mathrm{H}, \mathrm{dd}, J 15.5$ and $5.9, \mathrm{CH}=), 5.51(1 \mathrm{H}$, ddd, $J 15.5,8.4$ and $1.4, \mathrm{CH}=), 6.89$ $7.04(4 \mathrm{H}, \mathrm{m}, \mathrm{Ph}), 7.26-7.30(2 \mathrm{H}, \mathrm{m}, \mathrm{Ph})$ and $7.69-7.74(2 \mathrm{H}, \mathrm{m}$, $\mathrm{Ph})$.

Methyl (2S,5S,3E)-2-butyl-5-[(4-methylphenyl)sulfonylamino]-hex-3-enoate 43

By a procedure identical with that described for the reaction of 10 with $\mathrm{BuCu}(\mathrm{CN}) \mathrm{Li}$, the α, β-enoate 15 ($148 \mathrm{mg}, 0.5 \mathrm{mmol}$) was converted into the β, γ-enoate $43(169 \mathrm{mg}, 96 \%)$ by treatment with $\mathrm{BuCu}(\mathrm{CN}) \mathrm{Li}\left(2 \mathrm{mmol}, 4\right.$ equiv.) in THF at $-78^{\circ} \mathrm{C}$ for 30 min . Compound 43, colourless oil [Found (EI): $\mathrm{M}^{+}, 353.1667$. $\mathrm{C}_{18} \mathrm{H}_{27} \mathrm{NO}_{4} \mathrm{~S}$ requires $\left.M, 353.1661\right] ;[\alpha]_{\mathrm{D}}^{20}+1.5$ (c 1.0 in $\left.\mathrm{CHCl}_{3}\right) ; \nu_{\max } / \mathrm{cm}^{-1} 3390(\mathrm{NH}), 1726(\mathrm{CO})$ and $1598(\mathrm{C}=\mathrm{C})$; $\delta_{\mathrm{H}}\left(270 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 0.86(3 \mathrm{H}, \mathrm{t}, J 6.6, \mathrm{CMe}), 1.05-1.65(6 \mathrm{H}$, $\mathrm{m}, \mathrm{CH}_{2} \times 3$), $1.17(3 \mathrm{H}, \mathrm{d}, J 6.8, \mathrm{CMe}), 2.42(3 \mathrm{H}, \mathrm{s}, \mathrm{CMe}), 2.83$ $(1 \mathrm{H}, \mathrm{m}, 2-\mathrm{H}), 3.66(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 3.91(1 \mathrm{H}, \mathrm{m}, 5-\mathrm{H}), 4.64(1 \mathrm{H}$, $\mathrm{d}, J 7.6, \mathrm{NH}), 5.32(1 \mathrm{H}$, dd, $J 15.6$ and $5.4, \mathrm{CH}=), 5.46(1 \mathrm{H}$, ddd, $J 15.6,8.0$ and $0.5, \mathrm{CH}=), 7.27-7.30(2 \mathrm{H}, \mathrm{m}, \mathrm{Ph})$ and 7.72$7.76(2 \mathrm{H}, \mathrm{m}, \mathrm{Ph}) ; m / z(\mathrm{EI}) 353\left(\mathrm{M}^{+}\right), 338,306,294,198$ (base peak), 155 and 91.

Methyl (2S,5S,3E)-2-[(isopropoxy)dimethylsilylmethyl]-5-[(4-methylphenyl)sulfonylamino] hex-3-enoate 47

By a procedure identical with that described for the reaction of 13 with $\operatorname{Pr}^{i} \mathrm{OSi}(\mathrm{Me})_{2} \mathrm{CH}_{2} \mathrm{Cu}(\mathrm{CN}) \mathrm{MgCl} \cdot 2 \mathrm{LiCl}$, the α, β-enoate 15 ($295 \mathrm{mg}, 1 \mathrm{mmol}$) was converted into the β, γ-enoate 47 (356 $\mathrm{mg}, 83 \%$) by treatment with $\mathrm{Pr}^{\mathrm{i} O S i}(\mathrm{Me})_{2} \mathrm{CH}_{2} \mathrm{Cu}(\mathrm{CN}) \mathrm{Mg}$ $\mathrm{Cl} \cdot 2 \mathrm{LiCl}$ ($2 \mathrm{mmol}, 4$ equiv.) in THF at $-78^{\circ} \mathrm{C}$ for 30 min . Compound 47, colourless oil (Found: C, $55.9 ; \mathrm{H}, 8.1 ; \mathrm{N}, 3.3$. $\mathrm{C}_{20} \mathrm{H}_{33} \mathrm{NO}_{5} \mathrm{SSi}$ requires $\left.\mathrm{C}, 56.2 ; \mathrm{H}, 7.8 ; \mathrm{N}, 3.3 \%\right) ; \delta_{\mathrm{H}}(270 \mathrm{MHz}$; $\left.\mathrm{CDCl}_{3}\right) 0.06\left(6 \mathrm{H}, \mathrm{s}, \mathrm{SiMe}_{2}\right), 0.73(1 \mathrm{H}$, dd, $J 14.9$ and 7.3 , $\mathrm{CHHSi}), 1.05(1 \mathrm{H}, \mathrm{dd}, J 14.9$ and $7.7, \mathrm{CH} \mathrm{HSi}), 1.12(6 \mathrm{H}, \mathrm{d}, J$ $6.2, \mathrm{CMe} \times 2$), $1.17(3 \mathrm{H}, \mathrm{d}, J 6.5, \mathrm{CMe}), 2.42(3 \mathrm{H}, \mathrm{s}, \mathrm{CMe})$, $3.04(1 \mathrm{H}, \mathrm{dd}, J 15.7$ and $7.7, \mathrm{CH}), 3.63(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 3.85-$ $3.99(2 \mathrm{H}, \mathrm{m}, 5-\mathrm{H}$ and CH$), 4.50(1 \mathrm{H}, \mathrm{d}, J 7.3, \mathrm{NH}), 5.35(1$ H , ddd, $J 15.7,6.2$ and $0.5, \mathrm{CH}=), 5.51(1 \mathrm{H}$, ddd, $J 15.7,8.1$ and $1.1, \mathrm{CH}=), 7.27-7.30(2 \mathrm{H}, \mathrm{m}, \mathrm{Ph})$ and $7.71-7.76(2 \mathrm{H}, \mathrm{m}, \mathrm{Ph})$.

Methyl (2S,5S,3E)-2-(4-fluorophenylmethyl)-5-[(4-methyl-phenyl)sulfonylamino]hex-3-enoate 48

By a procedure identical with that described for the reaction of 13 with $p-\mathrm{FC}_{6} \mathrm{H}_{4} \mathrm{CH}_{2} \mathrm{Cu}(\mathrm{CN}) \mathrm{MgCl} \cdot 2 \mathrm{LiCl}$, the α, β-enoate 15
($295 \mathrm{mg}, 1 \mathrm{mmol}$) was converted into the β, γ-enoate $48(402 \mathrm{mg}$, 98%) by treatment with $p-\mathrm{FC}_{6} \mathrm{H}_{4} \mathrm{CH}_{2} \mathrm{Cu}(\mathrm{CN}) \mathrm{MgCl} \cdot 2 \mathrm{LiCl}(4$ mmol, 4 equiv.) in THF at $-78^{\circ} \mathrm{C}$ for 30 min . Compound 48, colourless oil (Found: C, 62.3; H, 6.1; N, 3.4. $\mathrm{C}_{21} \mathrm{H}_{24} \mathrm{FNO}_{4} \mathrm{~S}$ requires $\mathrm{C}, 62.2 ; \mathrm{H}, 6.0 ; \mathrm{N}, 3.5 \%$) ; $[\alpha]_{\mathrm{D}}^{20}+3.17$ (c 0.82 in $\left.\mathrm{CHCl}_{3}\right) ; \delta_{\mathrm{H}}\left(270 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 1.09(3 \mathrm{H}, \mathrm{d}, J 7.0, \mathrm{CMe}), 2.42$ (3 $\mathrm{H}, \mathrm{s}, \mathrm{CMe}), 2.62(1 \mathrm{H}, \mathrm{dd}, J 13.5$ and $7.0, \mathrm{PhC} H \mathrm{H}), 2.93(1 \mathrm{H}$, dd, $J 13.5$ and 7.8, PhCH H), 3.09 (1 H , dd, $J 15.7$ and $7.8,2-\mathrm{H}$), $3.62(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 3.84(1 \mathrm{H}, \mathrm{m}, 5-\mathrm{H}), 4.38(1 \mathrm{H}, \mathrm{d}, J 7.8, \mathrm{NH})$, $5.20(1 \mathrm{H}$, dd, $J 15.5$ and $5.9, \mathrm{CH}=)$, $5.51(1 \mathrm{H}$, ddd, $J 15.5,8.4$ and 1.4, $\mathrm{CH}=)$, 6.89-7.04 ($4 \mathrm{H}, \mathrm{m}, \mathrm{Ph}), 7.26-7.30(2 \mathrm{H}, \mathrm{m}, \mathrm{Ph})$ and 7.69-7.74 (2 H, m, Ph).

Methyl (2S,5R,3E)-2-methyl-5-[(4-methylphenyl)sulfonyl-amino]-5-phenylpent-3-enoate 49

By a procedure identical with that described for the reaction of 12 with $\mathrm{MeCu}(\mathrm{CN}) \mathrm{Li} \cdot \mathrm{LiBr}$, the α, β-enoate $18(86 \mathrm{mg}, 0.24$ mmol) was converted into the β, γ-enoate $49(77 \mathrm{mg}, 85 \%)$ by treatment with $\mathrm{MeCu}(\mathrm{CN}) \mathrm{Li} \cdot \mathrm{LiBr}(0.96 \mathrm{mmol})$ in $\mathrm{THF}-\mathrm{Et}_{2} \mathrm{O}$ (6:1) at $-78^{\circ} \mathrm{C}$ for 30 min . Compound 49, colourless oil [Found (FAB): $(\mathrm{M}+\mathrm{H})^{+}$, 374.1418. $\mathrm{C}_{20} \mathrm{H}_{24} \mathrm{NO}_{4} \mathrm{~S}$ requires $M+\mathrm{H}, 374.1426] ;[\alpha]_{\mathrm{D}}^{15}+32\left(c 0.97 \mathrm{in} \mathrm{CHCl}_{3}\right) ; \delta_{\mathrm{H}}(600 \mathrm{MHz} ;$ CDCl_{3}) $1.12(3 \mathrm{H}, \mathrm{d}, J 7.0, \mathrm{CMe}), 2.37(3 \mathrm{H}, \mathrm{s}, \mathrm{CMe}), 3.05(1 \mathrm{H}$, ddd, $J 14.0,7.0$ and $7.0,2-\mathrm{H}$), $3.68(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 4.83(1 \mathrm{H}, \mathrm{d}, J$ $7, \mathrm{NH}), 4.93(1 \mathrm{H}, \mathrm{m}, 5-\mathrm{H}), 5.55(1 \mathrm{H}, \mathrm{dd}, J 15.5$ and $5.9, \mathrm{CH}=$), $5.61(1 \mathrm{H}, \mathrm{dd}, J 15.5$ and $7.14, \mathrm{CH}=), 7.10-7.14(2 \mathrm{H}, \mathrm{m}, \mathrm{Ph})$, 7.18-7.26 (5 H, m, Ph) and 7.61-7.62 ($2 \mathrm{H}, \mathrm{m}, \mathrm{Ph}$); m / z (FAB) $374\left(\mathrm{MH}^{+}\right), 372,260,218,203,171,143$ (base peak) and 91.

Methyl (2S,5S,3E)-2-methyl-5-[(4-methylphenyl)sulfonyl-amino]-5-phenylpent-3-enoate 50
To a stirred solution of $\mathrm{ZnCl}_{2}\left(1.0 \mathrm{~mol} \mathrm{dm}^{-3}\right.$ solution in $\mathrm{Et}_{2} \mathrm{O}$; $1.66 \mathrm{~cm}^{3}, 1.66 \mathrm{mmol}$, 5 equiv.) and THF ($4 \mathrm{~cm}^{3}$) at $-78^{\circ} \mathrm{C}$ under argon was added via syringe MeLi• $\mathrm{LiBr}\left(1.5 \mathrm{~mol} \mathrm{dm}^{-3}\right.$ solution in $\mathrm{Et}_{2} \mathrm{O} ; 2.22 \mathrm{~cm}^{3}, 3.3 \mathrm{mmol}, 10$ equiv.), and the mixture was allowed to warm to $0^{\circ} \mathrm{C}$. Cuprous cyanide (29.8 $\mathrm{mg}, 0.33 \mathrm{mmol}$) was added to the above mixture at $-78^{\circ} \mathrm{C}$ and the mixture was stirred for 5 min . A solution of α, β-enoate 21 ($118 \mathrm{mg}, 0.33 \mathrm{mmol}$) in dry THF $\left(2 \mathrm{~cm}^{3}\right)$ was added dropwise to the above reagent at $-78^{\circ} \mathrm{C}$ with stirring, and stirring was continued for 30 min , followed by quenching with aqueous saturated $\mathrm{NH}_{4} \mathrm{Cl}-28 \% \mathrm{NH}_{4} \mathrm{OH}\left(1: 1 ; 4 \mathrm{~cm}^{3}\right)$. The mixture was extracted with $\mathrm{Et}_{2} \mathrm{O}-\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (4:1) and the extract was washed with water and dried $\left(\mathrm{MgSO}_{4}\right)$. Concentration under reduced pressure gave an oily residue, which was flash chromatographed on silica gel eluting with hexane-EtOAc (4:1) to give the title compound ($123 \mathrm{mg}, 99 \%$) as colourless crystals, $\mathrm{mp} 89^{\circ} \mathrm{C}$ [from hexane- $\mathrm{Et}_{2} \mathrm{O}$ (1:2)] (Found: C, 64.3; H, 6.3; N, 3.7. $\mathrm{C}_{20} \mathrm{H}_{23} \mathrm{NO}_{4} \mathrm{~S}$ requires C, 64.3; $\mathrm{H}, 6.2 ; \mathrm{N}, 3.8 \%$); $[\alpha]_{\mathrm{D}}^{20}+12.1$ (c 0.86 in CHCl_{3}); $\delta_{\mathrm{H}}\left(300 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 1.14(3 \mathrm{H}, \mathrm{d}, J 7.1$, CMe), $2.40(3 \mathrm{H}, \mathrm{s}, \mathrm{CMe})$, $3.05(1 \mathrm{H}, \mathrm{m}, 2-\mathrm{H}), 3.65(3 \mathrm{H}, \mathrm{s}$, OMe), 4.78 ($1 \mathrm{H}, \mathrm{d}, J 7.1, \mathrm{NH}$), 4.93 ($1 \mathrm{H}, \mathrm{m}, 5-\mathrm{H}$), 5.55 (1 H , dd, $J 15.4$ and $5.5, \mathrm{CH}=$), $5.62(1 \mathrm{H}, \mathrm{dd}, J 15.4$ and $6.4, \mathrm{CH}=$), 7.10-7.15 ($2 \mathrm{H}, \mathrm{m}, \mathrm{Ph}$), 7.19-7.25 ($5 \mathrm{H}, \mathrm{m}, \mathrm{Ph}$) and 7.61-7.64 ($2 \mathrm{H}, \mathrm{m}, \mathrm{Ph}$).

Methyl (2R,5S,3E)-2-methyl-5-[(4-methylphenyl)sulfonyl-

 amino]-5-phenylpent-3-enoate 51By a procedure identical with that described for the reaction of 21 with $\mathrm{Me}_{2} \mathrm{Zn} \cdot 2 \mathrm{LiCl} \cdot 2 \mathrm{LiBr}$ in the presence of $20 \mathrm{~mol} \% \mathrm{CuCN}$, the α, β-enoate 22 ($118 \mathrm{mg}, 0.33 \mathrm{mmol}$) was converted into the β, γ-enoate 51 ($113 \mathrm{mg}, 91 \%$). Compound 51 , colourless crystals, $\mathrm{mp} 70^{\circ} \mathrm{C}$ [from hexane- $\mathrm{Et}_{2} \mathrm{O}$ (1:3)] (Found: C, 64.2; H, 6.2; N, 3.6. $\mathrm{C}_{20} \mathrm{H}_{23} \mathrm{NO}_{4} \mathrm{~S}$ requires $\mathrm{C}, 64.3 ; \mathrm{H}, 6.2 ; \mathrm{N}, 3.8 \%$); $[\alpha]_{\mathrm{D}}^{2 \mathrm{O}}$ $-37.4\left(c 0.73\right.$ in $\left.\mathrm{CHCl}_{3}\right) ; \delta_{\mathrm{H}}\left(300 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 1.12(3 \mathrm{H}, \mathrm{d}, J$ 7.0, CMe), 2.37 ($3 \mathrm{H}, \mathrm{s}, \mathrm{CMe}$), $3.05(1 \mathrm{H}, \mathrm{m}, 2-\mathrm{H}), 3.68(3 \mathrm{H}, \mathrm{s}$, OMe), 4.77 ($1 \mathrm{H}, \mathrm{d}, J 7.0, \mathrm{NH}$), $4.94(1 \mathrm{H}, \mathrm{m}, 5-\mathrm{H}), 5.55(1 \mathrm{H}$, dd, $J 15.5$ and $5.4, \mathrm{CH}=), 5.61(1 \mathrm{H}, \mathrm{dd}, J 15.5$ and $6.7, \mathrm{CH}=$),
7.09-7.13 ($2 \mathrm{H}, \mathrm{m}, \mathrm{Ph}$), 7.18-7.24 (5 H, m, Ph) and 7.61-7.64 ($2 \mathrm{H}, \mathrm{m}, \mathrm{Ph}$).

Methyl (2E)-3-\{(2S)-1-[(4-methylphenyl)sulfonyl]azetidin-2-

 yl $\}$ prop-2-enoate 53By a procedure identical with that described for the preparation of the enoates 18 and 19 from the alcohol 17, the alcohol 52 ($2.55 \mathrm{~g}, 10.6 \mathrm{mmol}$) was converted into the α, β-enoate 53 (822 $\mathrm{mg}, 26 \%$), colourless crystals, $\mathrm{mp} 124^{\circ} \mathrm{C}$ [from $\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{Et}_{2} \mathrm{O}$ (1:9)] (Found: C, 56.7; H, 5.9; N, 4.7. $\mathrm{C}_{14} \mathrm{H}_{17} \mathrm{NO}_{4} \mathrm{~S}$ requires C, $56.9 ; \mathrm{H}, 5.8 ; \mathrm{N}, 4.7 \%$); [$\alpha]_{\mathrm{D}}^{20}-260\left(c 0.714\right.$ in CHCl_{3}); $\delta_{\mathrm{H}}(270$ $\mathrm{MHz} ; \mathrm{CDCl}_{3}$) 2.03-2.24 ($2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}$), 2.46 ($3 \mathrm{H}, \mathrm{s}, \mathrm{CMe}$), 3.68 $\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right), 3.75(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 4.50(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}), 6.12(1 \mathrm{H}$, dd, $J 15.6$ and $1.5, \mathrm{CH}=), 6.94(1 \mathrm{H}, \mathrm{dd}, J 15.6$ and $5.4, \mathrm{CH}=$), 7.36-7.41 ($2 \mathrm{H}, \mathrm{m}, \mathrm{Ph}$) and 7.70-7.74 ($2 \mathrm{H}, \mathrm{m}, \mathrm{Ph}$).

Methyl (2E)-3-\{(2S)-1-[(4-methylphenyl)sulfonyl]pyrrolidin-2yl $\}$ prop-2-enoate 55 and methyl ($2 Z$)-3- $\{(2 S)-1-[(4-m e t h y l-$ phenyl)sulfonyl] pyrrolidin-2-yl $\}$ prop-2-enoate 56
By a procedure identical with that described for the preparation of the enoates 18 and 19 from the alcohol 17, the alcohol 54 (255 $\mathrm{mg}, 1 \mathrm{mmol}$) was converted into the α, β-enoates 55 (193 mg , 63%) and $56(34 \mathrm{mg}, 11 \%)$.

Compound 55, colourless crystals, mp $120^{\circ} \mathrm{C}$ (from $\mathrm{Et}_{2} \mathrm{O}$) (Found: C, 58.1; H, 6.1; N, 4.4. $\mathrm{C}_{15} \mathrm{H}_{19} \mathrm{NO}_{4} \mathrm{~S}$ requires $\mathrm{C}, 58.2$; $\mathrm{H}, 6.2 ; \mathrm{N}, 4.5 \%$); $[\alpha]_{\mathrm{D}}^{2 \mathrm{O}}-144.8$ (c 0.724 in CHCl_{3}); $\delta_{\mathrm{H}}(270$ $\left.\mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 1.62-1.87\left(4 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \times 2\right), 2.43(3 \mathrm{H}, \mathrm{s}, \mathrm{CMe})$, $3.25(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}), 3.47(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}), 3.74(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 4.29$ $(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}), 6.07(1 \mathrm{H}, \mathrm{dd}, J 15.4$ and $1.6, \mathrm{CH}=), 6.85(1 \mathrm{H}, \mathrm{dd}$, $J 15.4$ and $5.7, \mathrm{CH}=), 7.31-7.37(2 \mathrm{H}, \mathrm{m}, \mathrm{Ph})$ and $7.70-7.75$ ($2 \mathrm{H}, \mathrm{m}, \mathrm{Ph}$).

Compound 56, colourless crystals, $\mathrm{mp} 98^{\circ} \mathrm{C}$ (from hexane) (Found: C, 58.1; H, 6.1; N, 4.4. $\mathrm{C}_{15} \mathrm{H}_{19} \mathrm{NO}_{4} \mathrm{~S}$ requires C , 58.2 ; $\mathrm{H}, 6.2 ; \mathrm{N}, 4.5 \%) ;[\alpha]_{\mathrm{D}}^{20}-192\left(c 0.778\right.$ in $\left.\mathrm{CHCl}_{3}\right) ; \delta_{\mathrm{H}}(270 \mathrm{MHz}$; $\left.\mathrm{CDCl}_{3}\right) 1.43-1.55(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}), 1.57-1.68(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}), 1.70-$ 1.88 ($1 \mathrm{H}, \mathrm{m}, \mathrm{CH}$), 2.04-2.20 ($1 \mathrm{H}, \mathrm{m}, \mathrm{CH}$), $2.44(3 \mathrm{H}, \mathrm{s}, \mathrm{CMe}$), $3.21(1 \mathrm{H}$, ddd, $J 10.5,7.6$ and $5.9, \mathrm{CH}), 3.52(1 \mathrm{H}$, ddd, $J 10.5$, 7.0 and $6.5, \mathrm{CH}$), $3.74(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe})$, $5.16(1 \mathrm{H}$, dddd, $J 15.3$, 7.6, 7.6 and $1.4, \mathrm{CH}$), $5.81(1 \mathrm{H}, \mathrm{dd}, J 11.6$ and $1.4, \mathrm{CH}=), 6.45$ (1 H , dd, $J 11.6$ and 8.1, $\mathrm{CH}=$), $7.31-7.34(2 \mathrm{H}, \mathrm{m}, \mathrm{Ph})$ and 7.70-7.73 ($2 \mathrm{H}, \mathrm{m}, \mathrm{Ph}$).

References

1 A. Spatola, Chemistry and Biochemistry of Amino Acids, Peptides and Proteins, ed. B. Weinstein, Marcel Dekker, New York, 1983, pp. 267-358.
2 (a) For a review of syntheses of (E)-alkene dipeptide isosteres up to May 1992, see: T. Ibuka, J. Synth. Org. Chem. Jpn., 1992, 50, 953962; (b) K. M. Bol and R. M. J. Liskamp, Tetrahedron, 1992, 31, 6425; (c) Y.-L. Li, K. Luthman and U. Hacksell, Tetrahedron Lett., 1992, 33, 4487; (d) B. Lygo, Synlett., 1992, 793; (e) T. Ibuka and Y. Yamamoto, Synlett., 1992, 760-777; (f) A. C. Bohnstedt, J. V. N. V. Prasad and D. H. Rich, Tetrahedron Lett., 1993, 34, 5217; (g) Y. F. Yong and M. A. Lipton, Bioorg. Med. Chem. Lett., 1993, 3, 2879; (h) R. Beresis and J. S. Panek, Bioorg. Med. Chem. Lett., 1993, 3, 1609; (i) T. Ibuka, K. Nakai, H. Habashita, K. Bessho, N. Fujii, Y. Chounan and Y. Yamamoto, Tetrahedron, 1993, 49, 9479; (j) N. Fujii, K. Nakai, H. Habashita, H. Yoshizawa, T. Ibuka, F. Garrido, A. Mann, Y. Chounan and Y. Yamamoto, Tetrahedron Lett., 1993, 34, 4227.
3 G. Precigoux, E. Ouvrard and S. Geoffre, Peptides, Structure and Function, ed. C. M. Deber, V. J. Hruby and K. D. Kopple, Pierce, IL, 1985, 763.
4 (a) M. T. Cox, J. J. Gormley, C. F. Hayward and N. N. Petter, J. Chem. Soc., Chem. Commun., 1980, 800; (b) Y.-K. Shue, M. D. Tufano and A. M. Nadzan, Tetrahedron Lett., 1988, 29, 4041; (c) J. S. Kaltenbronn, J. P. Hudspeth, E. A. Lunney, B. M. Michniewicz, E. D. Nicolaides, J. T. Repine, W. H. Roark, M. A. Steir, F. J. Tinney, P. K. W. Woo and A. D. Essenburg, J. Med. Chem., 1990, 33, 838; (d) A. Scarso, J. Degelaen, R. Viville, E. De Cock, M. van Marsenille, L. van der Auwera, D. Touwe and
G. van Binst, Bull. Soc. Chim. Belg., 1991, 100, 381; (e) D. Touwe, E. De Cock, M. van Marsenille, L. van der Auwera, G. van Binst, R. Viville, J. Degelaen and A. Scarso, Peptides 1988, ed. G. Jung and E. Bayer. Walter de Gruyter, Berlin \& New York, 1989, p. 562; (f) D. Touwe, J. Couder, M. Ceusters, D. Meert, T. F. Burks, T. H. Kramer, P. Davis, R. Knapp, H. I. Yamamura, J. E. Leysen and G. van Binst, Int. J. Peptide Protein Res., 1992, 39, 131.
5 For a preliminary communication of a portion of this organocopper chemistry, see: T. Ibuka, K. Nakai, H. Habashita, Y. Hotta, N. Fujii. N. Mimura, Y. Miwa, T. Taga and Y. Yamamoto, Angew. Chem., Int. Ed. Engl., 1994, 33, 652.
6 T. Hudlicky, J. O. Frazier, G. Seoane, M. Tiedje, A. Seoane, L. D. Kwart and C. Beal, J. Am. Chem. Soc., 1986, 108, 3755; T. Hudlicky, H. Luna, J. D. Price and F. Rulin, J. Org. Chem., 1990, 55. 4683.

7 W. H. Pearson, S. C. Bergmeier, S. Degan, K.-C. Lin, Y.-F. Poon, J. M. Schkeryantz and J. P. Williams, J. Org. Chem., 1990, 55, 5719.

8 (a) N.-S. Kim, J.-R. Choi and J. K. Cha, J. Org. Chem., 1993, 58, 7096; (b) E. J. Moran, J. E. Tellew, Z. Zhao and R. W. Armstrong, J. Org. Chem., 1993, 58, 7848.

9 I. Shimizu, A. Satake and A. Yamamoto, 7th IUPAC Symposium on Organometallic Chemistry directed towards Organic Synthesis, Kobe, Japan, 1993, Abstracts p. 349
10 (a) T. Ibuka, T. Nakao, S. Nishii and Y. Yamamoto, J. Am. Chem. Soc., 1986, 108, 7420; (b) T. Ibuka, M. Tanaka, S. Nishii and Y. Yamamoto, J. Am. Chem. Soc., 1989, 111, 4864; (c) T. Ibuka, N. Akimoto, M. Tanaka, S. Nishii and Y. Yamamoto, J. Org. Chem., 1989. 54, 4055; (d) T. Ibuka, M. Tanaka and Y. Yamamoto, J. Chem. Soc., Chem. Commun., 1989, 967; (e) T. Ibuka, H. Habashita, S. Funakoshi, N. Fujii, Y. Oguchi, T. Uyehara and Y. Yamamoto, Angew. Chem., Int. Ed. Engl., 1990, 29, 801; (f) T. Ibuka, H. Habashita, A. Otaka, N. Fujii, Y. Oguchi, T. Uyehara and Y. Yamamoto, J. Org. Chem., 1991, 56, 4370; (g) T. Ibuka, H. Yoshizawa, H. Habashita, N. Fujii, Y. Chounan, M. Tanaka and Y. Yamamoto, Tetrahedron Lett., 1992, 33, 3783; (h) T. Ibuka, T. Taga, H. Habashita, K. Nakai, H. Tamamura, N. Fujii, Y. Chounan, H. Nemoto and Y. Yamamoto, J. Org. Chem., 1993, 58, 1207.
11 M. Wada, R. Doi, R. Hosotani, T. Ibuka, H. Habashita, K. Nakai, N. Fujii and M. Imamura, Pancreas, 1995, 10, 301.

12 P. Wipf and P. C. Fritch, J. Org. Chem., 1994, 59, 4875.
13 G. E. Ham, J. Org. Chem., 1964, 29, 3052.
14 J. E. Baldwin, R. M. Adlington and N. G. Robinson, J. Chem. Soc., Chem. Commun., 1987, 153; J. E. Baldwin, A. C. Spivey, C. J. Schofield and J. B. Sweeney, Tetrahedron, 1993, 49, 6309; N. J. Church and D. W. Young, Tetrahedron Lett., 1995, 36, 151. For deprotection of arenesulfonamides with SmI_{2}, see: E. Vedejs and S. Lin, J. Org. Chem., 1994, 59, 1602.
15 M. Bucciarelli, A. Forni, I. Moretti, F. Prati and G. Torre, J. Chem. Soc., Perkin Trans. 1, 1993, 3041.
16 (a) N. Shigematsu, H. Setoi, I. Uchida, T. Shibata, H. Terano and M. Hashimoto Tetrahedron Lett., 1988, 29, 5147; (b) N. Fujii, K. Nakai, H. Habashita, Y. Hotta, H. Tamamura, A. Otaka and T. Ibuka, Chem. Pharm. Bull., 1994, 42, 2241.

17 (a) B. H. Lipshutz, S. Sharma and E. L. Ellsworth, J. Am. Chem. Soc., 1990, 112, 4032; (b) B. H. Lipshutz and S. Sengupta, Organic Reactions, ed. L. A. Paquette, John Wiley \& Sons, New York, 1992, p. 135; (c) S. H. Bertz, J. Am. Chem. Soc., 1990, 112, 4031; (d) S. H. Bertz, G. Dabbagh, X. He and P. P. Power, J. Am. Chem. Soc., 1993, 115, 11640; (e) T. Stemmler, J. E. Penner-Hahn and P. Knochel, J. Am. Chem. Soc., 1993, 115, 348: (f) J. P. Synder, D. P. Spangler and J. R. Behling, J. Org. Chem., 1994, 59, 2665.

18 Y. Chounan, T. Ibuka and Y. Yamamoto, J. Chem. Soc., Chem. Commun., 1994, 2003.
19 T. Ibuka, H. Habashita, S. Funakoshi, N. Fujii, K. Baba, M. Kozawa, Y. Oguchi, T. Uyehara and Y. Yamamoto, Tetrahedron: Asymmetry, 1990, 1, 389.
20 H. Nagaoka and Y. Kishi, Tetrahedron, 1981, 37, 3873.
21 (a) T. Ibuka, K. Nakai, H. Habashita, N. Fujii, F. Garrido, A. Mann, Y. Chounan and Y. Yamamoto, Tetrahedron Lett., 1993, 34, 7421; (b) T. Ibuka, K. Nakai, H. Habashita, Y. Hotta, A. Otaka, H. Tamamura, N. Fujii, N. Mimura, Y. Miwa, T. Taga, Y. Chounan and Y. Yamamoto, J. Org. Chem., in the press.

22 G. Hallnemo and C. Ullenius, Tetrahedron Lett., 1986, 27, 395; B. H. Lipshutz, S. Whitney, J. A. Kozlowski and C. M. Breneman, Tetrahedron Lett., 1986, 27, 4273; B. H. Lipshutz, E. L. Ellsworth and S. H. Dimock, J. Am. Chem. Soc., 1990, 112, 5869; S. Marquais, G. Cahiez and P. Knochel, Synlett., 1994, 849.

23 (a) R. W. Hoffmann, Chem. Rev., 1989, 89, 1841; (b) J. L. Broeker, R. W. Hoffmann and K. N. Houk, J. Am. Chem. Soc., 1991, 113, 5006; (c) A. G. M. Barrett, P. D. Weipert, D. Dhanak, R. K. Husa and S. A. Lebold, J. Am. Chem. Soc., 1991, 113, 9820; (d) R. W. Hoffmann, Angew. Chem., Int. Ed. Engl., 1992, 31, 1124; (e) M. T. Reetz, F. Kayser and K. Harms, Tetrahedron Lett., 1992, 33, 3453; (f) M. T. Reetz, D. Röhrig, K. Harms and G. Frenking, Tetrahedron Lett., 1994, 35, 8765.
24 (a) S. D. Kahn, C. F. Pau, A. R. Chamberlin and W. J. Hehre, J. Am. Chem. Soc., 1987, 109, 650; (b) B. W. Gung, M. A. Wolf and Z. Zhu, J. Org. Chem., 1993, 58, 3350; (c) B. W. Gung, J. P. Melnick, M. A. Wolf, J. A. Marshall and S. Beaudoin, J. Org. Chem., 1994, 59, 5609.
25 E. Testa, Principle of Organic Stereochemistry, Marcel Dekker, New York \& Basel, 1979, p. 95; E. L. Eliel and N. L. Allinger, Topics in Stereochemistry, vol. 5, Wiley-Interscience, New York, 1970, p. 187.
26 Z. Smith, N. Carballo, E. B. Wilson, K.-M. Marstokk and H. Møllendal, J. Am. Chem. Soc., 1985, 107, 1951; N. C. Gonnella, K. Nakanishi, V. S. Martin and K. B. Sharpless, J. Am. Chem. Soc., 1982, 104, 3775.
27 (a) A. De Meijere and W. Lüttke, Tetrahedron, 1969, 25, 2047; (b) G. R. De Mare and J. S. Martin, J. Am. Chem. Soc., 1966, 88, 5033.

28 J. A. Marshall, J. D. Trometer, B. E. Blough and T. D. Crute, J. Org. Chem., 1988, 53, 4274.

Paper 5/00213C
Received 13th January 1995
Accepted 7th February 1995

[^0]: \dagger According to IUPAC rules, the structure inside the bracket following ψ is the unit substituting for the amide bond, see: IUPAC-IUB Joint Commission on Biochemical Nomenclature, Eur. J. Biochem., 1984, 138, 9 .

